HYBRID SENTIMENT ANALYSIS OF MAXIM APP USERS USING SUPPORT VECTOR MACHINE AND LEXICON-BASED APPROACH
DOI:
https://doi.org/10.23960/jitet.v13i3S1.8148Abstract Views: 41 File Views: 34
Keywords:
Sentiment Analysis, Lexicon-Based, Maxim, SVM, TF-IDFAbstract
Online transportation applications such as Maxim have rapidly grown alongside technological advancements. These platforms accumulate large volumes of user reviews on sources like the Google Play Store, providing valuable insights into user perceptions. However, the unstructured nature of textual data makes systematic analysis difficult. This study proposes a sentiment classification model to categorize Maxim user reviews into positive and negative sentiments, excluding neutral responses. The method integrates a lexicon-based approach using the InSet Lexicon with a Support Vector Machine (SVM) classifier. Preprocessing steps included text cleaning, case folding, normalization, tokenization, stopword removal, and stemming. Feature extraction was conducted using Term Frequency–Inverse Document Frequency (TF-IDF), followed by sentiment classification with SVM. Evaluation using a confusion matrix achieved an accuracy of 96.07%. For negative sentiment, the model obtained a precision of 79%, recall of 83%, and F1-score of 81%; for positive sentiment, precision was 89%, recall 98%, and F1-score 93%. These results indicate that integrating lexical resources with machine learning provides an effective solution for sentiment analysis of user-generated reviews.
Downloads
References
H. Delaere, S. Basu, C. Macharis, and I. Keseru, “Barriers and opportunities for developing, implementing and operating inclusive digital mobility services,” Eur. Transp. Res. Rev., vol. 16, no. 1, 2024, doi: 10.1186/s12544-024-00684-8.
A. Z. Yonatan, “Indonesia Jadi Pengguna Transportasi Online Terbesar 2024,” GoodStats. 2024, [Online]. Available: https://goodstats.id/article/indonesia-jadi-pengguna-transportasi-online-terbesar-2024-sn07c.
Maxim Indonesia, “Maxim Indonesia (PT Teknologi Perdana Indonesia): Overview [Linkedln page],” 2025. https://www.linkedin.com/company/maximid/?originalSubdomain=id (accessed Sep. 22, 2025).
Maxim Indonesia, “maxim - ojek, transportasi - Apps on Google Play,” 2025. https://play.google.com/store/apps/details?id=com.taxsee.taxsee (accessed Sep. 01, 2025).
S. E. Safitri, W. D. Yuniarti, M. R. Handayani, and K. Umam, “User Opinion Mining on the Maxim Application Reviews Using BERT-Base Multilingual Uncased,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 14, no. 3, pp. 365–372, 2025, doi: 10.32736/sisfokom.v14i3.2391.
V. H. Pranatawijaya, N. N. K. Sari, R. A. Rahman, E. Christian, and S. Geges, “Unveiling User Sentiment: Aspect-Based Analysis and Topic Modeling of Ride-Hailing and Google Play App Reviews,” J. Inf. Syst. Eng. Bus. Intell., vol. 10, no. 3, pp. 328–339, 2024, doi: 10.20473/jisebi.10.3.328-339.
A. N. Alfarobby and H. Irawan, “Analisis Sentimen Kepuasan Konsumen Pengguna Transportasi Online Pada Ulasan Google Playstore Menggunakan Indobert Dan Topic Modeling (Studi kasus: Gojek dan Grab),” e-Proceeding Manag., vol. 11, no. 1, p. 72, 2024.
H. M. U. Ali, Q. Farooq, A. Imran, and K. El Hindi, “A systematic literature review on sentiment analysis techniques, challenges, and future trends,” Knowl. Inf. Syst., vol. 67, no. 5, pp. 3967–4034, May 2025, doi: 10.1007/S10115-025-02365-X/METRICS.
H. Firda, P. Putra, N. R. Oktadini, P. E. Sevtiyuni, and A. Meiriza, “Comparison of Rating-based and Inset Lexicon-based Labeling in Sentiment Analysis using SVM (Case Study: GoBiz Application Reviews on Google Play Store),” Sistemasi, vol. 14, no. 2, p. 516, 2025, doi: 10.32520/stmsi.v14i2.4795.
P. K. Gautam and S. Shaw, “Sentiment Analysis Approaches: A Systematic Review,” 2022, doi: 10.4108/eai.16-4-2022.2318164.
S. Fransiska and A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Sci. J. Informatics, vol. 7, no. 2, pp. 203–212, 2020, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji.
Y. Mao, Q. Liu, and Y. Zhang, “Sentiment analysis methods, applications, and challenges: A systematic literature review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 4, p. 102048, 2024, doi: 10.1016/j.jksuci.2024.102048.
E. C. M. Torres and L. G. de Picado-Santos, “Sentiment Analysis and Topic Modeling in Transportation: A Literature Review,” Appl. Sci., vol. 15, no. 12, 2025, doi: 10.3390/app15126576.
H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (Svm),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4095.
A. Sitanggang, Y. Umaidah, Y. Umaidah, R. I. Adam, and R. I. Adam, “Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4902.
A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, pp. 829–835, 2023, doi: 10.23960/jitet.v11i3s1.3348.
I. Cero, J. Luo, and J. M. Falligant, “Lexicon-Based Sentiment Analysis in Behavioral Research,” Perspect. Behav. Sci., vol. 47, no. 1, p. 283, Mar. 2024, doi: 10.1007/S40614-023-00394-X.
A. Rufaida, A. Permanasari, and N. Setiawan, “Lexicon-Based Sentiment Analysis Using Inset Dictionary: A Systematic Literature Review,” 2023, doi: 10.4108/eai.5-10-2022.2327474.
K. Alemerien, A. Al-Ghareeb, and M. Z. Alksasbeh, “Sentiment Analysis of Online Reviews: A Machine Learning Based Approach with TF-IDF Vectorization,” J. Mob. Multimed., vol. 20, no. 05, pp. 1089–1116, 2024, doi: 10.13052/jmm1550-4646.2055.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, pp. 391–394, 2017, doi: 10.1109/IALP.2017.8300625.
Z. Zhan, “Comparative Analysis of TF-IDF and Word2Vec in Sentiment Analysis: A Case of Food Reviews,” ITM Web Conf., vol. 70, p. 02013, 2025, doi: 10.1051/itmconf/20257002013.
T. Ahmed Khan, R. Sadiq, Z. Shahid, M. M. Alam, and M. Mohd Su’ud, “Sentiment Analysis using Support Vector Machine and Random Forest,” J. Informatics Web Eng., vol. 3, no. 1, pp. 67–75, 2024, doi: 10.33093/jiwe.2024.3.1.5.
N. W. S. Saraswati, I. K. G. D. Putra, M. Sudarma, and I. M. Sukarsa, “Enhance sentiment analysis in big data tourism using hybrid lexicon and active learning support vector machine,” Bull. Electr. Eng. Informatics, vol. 13, no. 5, pp. 3663–3674, 2024, doi: 10.11591/eei.v13i5.7807.
G. Jeffson Sagala and Y. T. Samuel, “Sentiment Analysis on ChatGPT App Reviews on Google Play Store Using Random Forest Algorithm, Support Vector Machine and Naïve Bayes,” Int. J. Eng. Bus. Soc. Sci., vol. 2, no. 04, pp. 1194–1204, 2024, doi: 10.58451/ijebss.v2i04.148.
A. Fatihin, “Analisis Sentimen Terhadap Ulasan Aplikasi Mobile Menggunakan Metode Support Vector Machine (Svm) Dan Pendekatan Lexicon Based,” 2021, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/65009.
P. Kurniawati, R. Y. Fa’rifah, and D. Witarsyah, “Sentiment Analysis of Maxim Online Transportation App Reviews using Support Vector Machine (SVM) Algorithm,” Build. Informatics, Technol. Sci., vol. 5, no. 2, 2023, doi: 10.47065/BITS.V5I2.4265.
A. N. A. Saputra, R. E. Saputro, and D. I. S. Saputra, “Enhancing Sentiment Analysis Accuracy Using SVM and Slang Word Normalization on YouTube Comments,” Sinkron, vol. 9, no. 2, pp. 687–699, 2025, doi: 10.33395/sinkron.v9i2.14613.
A. Ligthart, C. Catal, and B. Tekinerdogan, Systematic reviews in sentiment analysis: a tertiary study, vol. 54, no. 7. Springer Netherlands, 2021.
T. Fardiansyah, Z. Yunizar, and Maryana, “Implementation of Support Vector Machine Method with TF-IDF for Sentiment Analysis of the Al-Zaytun Islamic Boarding School Controversy,” Int. J. Eng. Sci. Inf. Technol., vol. 5, no. 3, pp. 58–65, 2025, doi: 10.52088/ijesty.v5i3.883.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



