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g:ggnor‘;;; for Abstrak: Studi ini menyajikan kerangka kerja pembelajaran mesin Long

IoT: g ’ Short-Term Memory (LSTM) canggih untuk memprediksi Remaining Useful
o o Life (RUL) atau Sisa Umur Manfaat pada bantalan motor melalui pemantauan

Multi-Sensor Monitoring, . s

LSTM- multi-sensor. Parameter-parameter kritis, termasuk getaran (Root Mean

Square/RMS), emisi akustik, suhu, arus stator, dan kecepatan rotasi (RPM),
disimulasikan selama periode operasional 1000 hari untuk tiga motor dengan
kondisi yang bervariasi. Ambang batas kegagalan ditentukan untuk
merepresentasikan kondisi operasional yang parah. Model LSTM mencapai
Corespondent Email: nilai RMSE (Root Mean Square Error) sebesar 28,15, 30,29, dan 29,21 hari,
Yani@akti.ac.id serta nilai R? sebesar 0,989, 0,9876, dan 0,9877 masing-masing untuk dataset
pelatihan, validasi, dan pengujian. Hasil ini menunjukkan akurasi prediktif dan
keandalan yang tinggi. Integrasi data multi-sensor meningkatkan ketahanan
(robustness) model dan mendukung perencanaan pemeliharaan proaktif. Studi
ini memberikan landasan untuk integrasi di masa mendatang antara model
prediktif berbasis LSTM dengan sistem pemantauan real-time yang
mendukung [oT (Internet of Things) dalam aplikasi industri.

Predictive Maintenance,
Remaining Useful Life

Abstract: This study presents an advanced Long Short-Term Memory (LSTM)
machine learning framework for predicting the Remaining Useful Life (RUL)
of bearing motors through multi-sensor monitoring. Critical parameters,
including vibration (RMS), acoustic emission, temperature, stator current,
and rotational speed (RPM), were simulated over a 1000-day operational
Copyright  © JITET  (Jumal  period for three motors with varying conditions. Failure thresholds were
ITnefg]zi;]kaTh iiananiZIi:kn;;( aflzktég defined to represent severe operational conditions. The LSTM model achieved
accefs article distributed under terl-)ms RMSE values of 28.15, 30.29, and 29.21 days and R? values of 0.989, 0.9876,
and conditions of the Creative and 0.9877 for training, validation, and test datasets, respectively. These
Commons Attribution (CCBY NC)  results demonstrate high predictive accuracy and reliability. Integrating
multi-sensor data improves the model’s robustness and supports proactive
maintenance planning. The study provides a foundation for future integration
of LSTM-based predictive models with loT-enabled real-time monitoring
systems in industrial applications.

1. INTRODUCTION frequent causes of unplanned downtime in

Industrial machinery, particularly rotating industrial systems, leading to significant
equipment like bearing motors, is critical to financial losses [3], [4]. Predictive maintenance
production reliability and operational safety [1], (PdM) has emerged as a proactive strategy to

[2]. Bearing failures are among the most anticipate equipment failures before they occur,
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leveraging real-time condition monitoring and
data-driven models [5]. Unlike traditional time-
based maintenance, PdM relies on machine
learning algorithms to detect patterns in
operational data, which enables maintenance
only when necessary and thus reduces
downtime and costs. Among machine learning
approaches, Long Short-Term Memory
(LSTM) networks are particularly suited for
modeling time-dependent degradation because
they can capture long-term dependencies in
sequential data [6], [7] .The choice of machine
learning algorithm plays a pivotal role in
determining the accuracy and effectiveness of
predictive models, a factor that is equally
critical when addressing challenges in
predictive maintenance[8]. LSTM networks
have been successfully applied in predictive
maintenance for applications including
electrochemical systems, wind turbines, and
industrial motors [9], [10]. However, there is a
research gap in applying LSTM for multi-
sensor RUL prediction in bearing motors under
complex operational conditions, particularly
when integrating vibration, acoustic, thermal,
and electrical data streams.

This study addresses this gap by
developing a multi-sensor LSTM model to
predict RUL in bearing motors. The model
utilizes vibration (RMS), acoustic emission,
temperature, stator current, and RPM data from
simulated 1000-day operations across three
motors with varying conditions. Failure
thresholds for each parameter are defined to
identify severe degradation. This research aims
to demonstrate that multi-sensor LSTM
modeling can provide accurate RUL predictions
and offer a foundation for real-time loT-enabled
PdM systems.

Condition-based monitoring and
predictive maintenance have increasingly relied
on data-driven approaches, including artificial
intelligence and deep learning models.
Traditional threshold-based systems often fail
to detect complex degradation patterns,
especially when multiple parameters interact
nonlinearly [2]. LSTM networks, with their
ability to retain information over long
sequences, have become a preferred choice for
RUL prediction in machinery with time-
dependent degradation behaviors [9], [11].

Several studies highlight the benefits of
multi-sensor integration. For instance, vibration
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analysis alone may not fully capture mechanical
wear, while combining thermal, acoustic, and
electrical signals enhances model accuracy . Xu
et al. (2025) successfully applied CNN-LSTM
models for PEM water electrolyzer degradation
prediction, demonstrating the capacity of
LSTM  networks to model complex
electrochemical dynamics [12]. Similarly,
Imani, Beikmohammadi, and Arabnia (2025)
[13] showed that ensemble learning and multi-
feature input improved classification accuracy
in imbalanced datasets. Despite these advances,
few studies have explored LSTM-based RUL
prediction for bearing motors with integrated
multi-sensor data under extended operational
simulations. This study fills this gap by
combining multiple sensor signals and
assessing the LSTM model's ability to
generalize across varying motor conditions.

2. METHODE

1. Dataset and Sensor Monitoring

The study employs a simulated dataset
representing 1000 days of bearing motor
operation. Figure 1 shows the specification of
bearing motor, with consist of 0,75W Power
and Rated speed 1797.
Specifications:
Power 0.75 kW
Rated speed 1797

Load 26.7%
High-speed bearings

Bearing motor including its specifications
Figure 1. Bearing Motor Specification

Three motors with differing operational
conditions were modeled to capture variability.
Five key parameters were monitored:

1. Vibration (RMS) — mm/s

2. Acoustic Emission — dB

3. Temperature — °C

4. Stator Current — Ampere

5. Rotational Speed (RPM) — revolutions per
minute

Failure thresholds were defined based on severe
operational limits: vibration >6.3 mm/s,
acoustic emission >60 dB, temperature >80°C,
stator current deviation >20%, and RPM
deviation >5%. These thresholds were derived
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from industrial standards and prior studies on
motor degradation (Mobley, 2002; Jardine et
al., 2006) [14], [15].

2. LSTM Model Architecture

The Figure 2 shows Architecture of LSTM
model consisted of multiple layers of LSTM
units with dropout regularization to prevent
overfitting. The input comprised time-series
sequences from the five monitored parameters.
The model predicted the RUL in days,
optimized using Mean Squared Error (MSE)
loss. Hyperparameters, including the number of
layers, hidden units, and learning rate, were
tuned via grid search.
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Figure 2. LSTM Architecture [16]

Training, Validation, and Testing

The dataset was split into training (70%),
validation (15%), and testing (15%) sets. Model
performance was evaluated using Root Mean
Squared Error (RMSE), Mean Absolute Error
(MAE), and R? metrics. The LSTM model
demonstrated strong generalization, with
minimal performance drop between training
and testing datasets.

LSTM Architecture for RUL Prediction
Long Short-Term Memory (LSTM)
networks are a specialized type of recurrent
neural network (RNN) designed to capture
long-term dependencies in sequential data. In
the context of Remaining Useful Life (RUL)
prediction for bearing motors, LSTM networks
are particularly suitable because they can model
temporal correlations in multi-sensor time-
series data, such as vibration, acoustic emission,
temperature, stator current, and rotational speed
[17] . The Figure 3 shows an architecture of the

LSTM model, which consists of an input layer
that receives time-series sensor readings,
followed by one or more LSTM layers that
extract temporal features and dependencies.
These layers are typically followed by fully
connected (dense) layers that map the learned
features to the predicted RUL. The output layer
provides a continuous RUL estimation for each
bearing motor.
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Figure 3. LSTM Architecture for RUL

Prediction

3. RESULT AND DISCUSSION

Table 1 show that the LSTM model can
accurately predict RUL, with RMSE values
indicating low deviation between predicted and
actual values. High R? values demonstrate that
the model explains the majority of variance in
the RUL data. These findings align with
previous studies that highlight the effectiveness
of LSTM for time-dependent degradation

prediction.
Table 1. LSTM Metrics for Bearing Table
Lifter
Dataset RMSE MAE R?
Train 28.15 22.89 0.989
Validation  30.29 24.21 0.9876
Test 29.21 23.04 0.9877

And Figure 4 shows the prediction accuracy
trend aligned with RUL calculation result.
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Figure 4. Regression Prediction Accuracy
aligned with RUL of LSTM

I.  DISCUSSION

The integration of multi-sensor monitoring
data significantly enhances the predictive
capability of the LSTM model. Vibration,
acoustic, and thermal signals capture
complementary aspects of bearing degradation,
while electrical parameters like stator current
and RPM provide insight into operational
anomalies [18].

The model’s high R? values across training,
validation, and test datasets suggest strong
robustness and minimal overfitting. Such
predictive performance supports proactive
maintenance strategies by allowing timely
interventions before failure thresholds are
reached.

4. CONCLUTION

This study demonstrates the efficacy of
LSTM-based models for RUL prediction in
bearing motors using multi-sensor data. The
model successfully captures long-term temporal
dependencies in vibration, acoustic, thermal,
and electrical signals, providing accurate and
reliable predictions. This framework can inform
proactive maintenance scheduling, minimize
unplanned downtime, and serve as a foundation
for IoT-enabled real-time monitoring of
industrial machinery. Future research should
integrate edge computing, [oT sensor networks,
and adaptive control to enhance predictive
maintenance systems.
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