
JITET (Jurnal Informatika dan Teknik Elektro Terapan)

Vol. 14 No. 1, pISSN: 2303-0577 eISSN: 2830-7062 http://dx.doi.org/10.23960/jitet.v14i1.8790

 828

PERANCANGAN SERVER APLIKASI SEDERHANA

GUNA MENINGKATKAN EFEKTIVITAS PENGELOLAAN

DATA

Mohammad Agil1*, Imron Sodikin2, Ulil Absor3 , A. Hamdani 4

1,Program Studi Sistem Informasi Fakultas Sains dan Teknologi, Universitas Ibrahimy,Situbondo
2Program Studi Sistem Informasi Fakultas Sains dan Teknologi, Universitas Ibrahimy,Situbondo

Keywords:

Server aplikasi, pengelolaan

data, perancangan sistem,

arsitektur tiga tingkat,

CRUD, RESTful API

Corespondent Email:

mohagil040@gmail.com

Copyright © JITET (Jurnal
Informatika dan Teknik Elektro
Terapan). This article is an open
access article distributed under
terms and conditions of the
Creative Commons Attribution
(CC BY NC)

Abstrak. Penelitian ini menyajikan perancangan dan implementasi konsep

dari sebuah server aplikasi sederhana yang bertujuan untuk mendukung proses

dasar pengelolaan data, khususnya di lingkungan pendidikan atau instansi

skala kecil. Kebutuhan akan sistem informasi yang terstruktur menuntut

pemahaman yang jelas mengenai peran server aplikasi sebagai penghubung

antara permintaan klien dengan penyimpanan data. Banyak penelitian

terdahulu cenderung berfokus pada implementasi dan konfigurasi tingkat

lanjut yang kompleks, sehingga menyulitkan pemula untuk memahami konsep

dasar. Oleh karena itu, penelitian ini bertujuan untuk mengisi keselarasan

tersebut dengan menyediakan rancangan server aplikasi yang konseptual,

ringan, dan mudah diterapkan. Metodologi penelitian mengadopsi pendekatan

rekayasa sistem, yang meliputi tahapan analisis kebutuhan fungsional dan

non-fungsional, perancangan arsitektur sistem three-tier (klien, server

aplikasi, server basis data), pemodelan alur data menggunakan Entity-

Relationship Diagram (ERD), dan perancangan Application Programming

Interface (API) berbasis RESTful untuk operasi CRUD (Create, Read, Update,

Delete). Hasil perancangan menunjukkan bahwa arsitektur yang diusulkan

mampu mendukung aktivitas pengelolaan data secara efektif tanpa

memerlukan implementasi yang kompleks. Sebagai studi kasus, dirancang

sebuah sistem pengelolaan data siswa sederhana dengan antarmuka pengguna

dasar. Model konsepsi dan implementasi parsial ini diharapkan dapat menjadi

referensi awal yang komprehensif bagi pelajar, pengembang pemula, maupun

instansi kecil yang ingin memahami dan membangun fondasi sistem informasi

berbasis server yang efektif dan efisien.

Abstract. his study presents the design and implementation of the concept of

a simple application server intended to support basic data management

processes, particularly in educational environments or small-scale

institutions. The growing need for structured information systems requires a

clear understanding of the role of an application server as an intermediary

between client requests and data storage. Many previous studies tend to focus

on complex, advanced-level implementations and configurations, which often

make it difficult for beginners to grasp the fundamental concepts. Therefore,

this study aims to address this gap by providing a conceptual, lightweight, and

easy-to-implement application server design.The research methodology

adopts a systems engineering approach, which includes the stages of

functional and non-functional requirements analysis, three-tier system

architecture design (client, application server, and database server), data flow

modeling using an Entity-Relationship Diagram (ERD), and the design of a

RESTful Application Programming Interface (API) for CRUD (Create, Read,

Update, Delete) operations.The design results indicate that the proposed

mailto:mohagil040@gmail.com
https://journal.eng.unila.ac.id/index.php/jitet/index

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 829

architecture is capable of effectively supporting data management activities

without requiring complex implementation. As a case study, a simple student

data management system with a basic user interface is designed. This

conceptual model and partial implementation are expected to serve as a

comprehensive introductory reference for students, beginner developers, and

small institutions seeking to understand and build an effective and efficient

server-based information system foundation.

1. PENDAHULUAN

Di era digitalisasi, kemampuan untuk

mengelola data secara sistematis, cepat, dan

akurat telah menjadi fondasi utama bagi

kemajuan suatu organisasi, baik itu lembaga

pemerintahan, swasta, maupun institusi

pendidikan. Proses manajemen data yang

manual, misalnya menggunakan lembar kerja

spreadsheet atau bahkan arsip kertas, rentan

terhadap berbagai masalah seperti kesalahan

input data, redundansi informasi, keamanan

yang terbatas, dan proses akses yang tidak

efisien. Untuk mengatasi tantangan ini,

diperlukan sebuah sistem informasi yang

terstruktur dan andal

Pada inti dari setiap sistem informasi

berbasis web modern terdapat server aplikasi

(server aplikasi). Server aplikasi berfungsi

sebagai middleware atau perantara krusial yang

bertanggung jawab atas pengiriman logika

bisnis. Ia menerima permintaan dari klien

(browser pengguna), memproses permintaan

tersebut, berinteraksi dengan basis data untuk

mengambil atau menyimpan informasi, dan

kemudian mengirimkan kembali respon yang

sesuai kepada pengguna [1]. Tanpa adanya

server aplikasi yang dirancang dengan baik,

komunikasi antara antarmuka pengguna dan

lapisan penyimpanan data akan menjadi kacau

dan tidak efisien.

Berbagai penelitian sebelumnya telah

banyak membahas pengembangan sistem

informasi dan arsitektur server. Penelitian di

bidang sistem integrasi, misalnya, telah

menunjukkan pentingnya peran server sebagai

perantara utama dalam pertukaran data

menggunakan layanan seperti REST API [1].

Di sisi lain, kajian lain menekankan pada

optimalisasi manajemen data dasar melalui

server model yang dimaksudkan untuk

meningkatkan efisiensi akses dan keamanan

data [2]. Namun, sebagian besar penelitian ini

cenderung berfokus pada implementasi tingkat

lanjut, penggunaan kerangka kerja tertentu yang

kompleks, atau konfigurasi server untuk

lingkungan produksi berskala besar. Fokus ini

sering kali mengabaikan kebutuhan para

pemula—mahasiswa, pengembang perangkat

lunak yang baru memulai, atau staf IT di

instansi kecil—yang memerlukan pemahaman

mendasar mengenai cara kerja server aplikasi

sebelum melangkah ke konfigurasi yang lebih

rumit.

State of the art dalam bidang ini

menunjukkan bahwa terdapat uraian mengenai

desain server aplikasi sederhana secara

konseptual yang disertai dengan contoh

implementasi yang mudah dipahami. Padahal,

arsitektur server yang sederhana dan ringan

sangat relevan untuk kebuvirtualisasi ringan .

2. TINJAUAN PUSTAKA

Tinjauan pustaka pada penelitian ini

membahas konsep-konsep fundamental yang

menjadi landasan teoritis dalam perancangan

dan implementasi server aplikasi sederhana.

1. 2.1 Server Aplikasi dan Arsitektur

Tiga Tingkat

Server aplikasi adalah perangkat lunak

middleware yang menyediakan lingkungan

untuk menjalankan aplikasi, khususnya aplikasi

berbasis web. Tugas utamanya adalah

mengelola logika bisnis dari aplikasi. Ia

bertindak sebagai perantara antara klien

(biasanya browser web) dan sumber daya lain

seperti basis data atau layanan eksternal [5].

Server aplikasi menangani berbagai tugas

kompleks seperti manajemen sesi pengguna,

validasi data, eksekusi transaksi, dan

pengelolaan koneksi ke data dasar.

Untuk memastikan server aplikasi berjalan

secara optimal, diperlukan arsitektur yang

terstruktur. Arsitektur three-tier (tiga lapisan)

adalah model arsitektur perangkat lunak yang

memisahkan aplikasi menjadi tiga lapisan

logistik dan fisik yang berbeda [6]. Model ini

dirancang untuk meningkatkan skalabilitas,

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 830

ketidaknyamanan, dan pemeliharaan. Tiga

lapisan tersebut adalah:

2. Tingkat Presentasi (Lapisan

Presentasi): antarmuka pengguna (UI)

yang berinteraksi langsung dengan

pengguna. Dalam aplikasi web, lapisan

ini dijalankan di browser klien.

3. Tingkat Aplikasi (Lapisan

Aplikasi/Logika): Inti dari aplikasi, di

mana seluruh logika bisnis berada.

Lapisan ini dijalankan pada server

aplikasi.

4. Data Tier (Lapisan Data): Bertanggung

jawab untuk menyimpan, mengelola,

dan mengakses data. Biasanya terdiri

dari sistem manajemen basis data

(DBMS).

Pemisahan ini memungkinkan pengembang

untuk memperbarui satu lapisan tanpa

mengubah lapisan lain secara signifikan.

5. 2.2 Operasi CRUD dan RESTful API

CRUD adalah singkatan dari empat operasi

dasar yang paling umum digunakan dalam

pengelolaan data persisten: Create , Read ,

Update , dan Delete [7]. Setiap sistem

pengelolaan data yang kompleks pada dasarnya

dibangun di atas kombinasi dari keempat

operasi ini.

Untuk menghubungkan lapisan aplikasi

dengan lapisan data, pendekatan modern yang

paling populer adalah menggunakan RESTful

API (Representational State Transfer). REST

adalah gaya arsitektur untuk mendesain aplikasi

terdistribusi. API yang mematuhinya disebut

RESTful API. API ini menggunakan metode

HTTP standar (GET untuk Read, POST untuk

Create, PUT/PATCH untuk Update, dan

DELETE untuk Delete) untuk melakukan

operasi CRUD [1]. Penggunaan RESTful API

memungkinkan komunikasi yang jelas,

stateless (tidak menyimpan status sesi di sisi

server), dan skalabel antara klien dan server.

6. 2.3 Node.js dan Express.js

Node.js adalah lingkungan runtime

JavaScript sisi server yang bersifat open-source

dan cross-platform . Node.js menjalankan

mesin JavaScript V8 (mesin yang sama dengan

Google Chrome) di luar browser, yang

memungkinkan pengembang untuk

menggunakan JavaScript untuk menulis alat

baris perintah dan skrip sisi server [3].

Keunggulan utama Node.js adalah model I/O

non-blocking dan berbasis event-driven , yang

membuatnya sangat ringan dan efisien untuk

aplikasi yang bersifat real-time dan data-

intensif.

Express.js adalah kerangka kerja (

framework) aplikasi web minimalis dan

fleksibel untuk Node.js. Express menyediakan

sekumpulan fitur yang kuat untuk aplikasi web

dan mobile, mempermudah proses pembuatan

API, routing, middleware, dan penanganan

permintaan HTTP. Karena sifatnya yang

minimalis, Express tidak memaksakan struktur

tertentu, memberikan kebebasan bagi

pengembang untuk merancang arsitektur

aplikasi mereka sendiri, yang menjadikannya

pilihan ideal untuk proyek-proyek sederhana

dan bagi pemula [3].

3. METODE PENELITIAN

3.1 Rancangan Penelitian

Penelitian Penelitian ini menggunakan

metode deskriptif kualitatif dengan pendekatan

rekayasa sistem. Pendekatan ini dipilih karena

tujuan utamanya adalah merancang,

membangun, dan mendemonstrasikan sebuah

prototipe sistem. Proses penelitian ini dibagi

beberapa menjadi tahapan sistematis. [1]. [2].

3.1 Tahapan Perancangan dan

Implementasi Sistem

Proses perancangan dan implementasi

mengikuti model iteratif sederhana, dengan

fokus pada penghasilan artefak desain yang

jelas pada setiap tahap.

1. Analisis Kebutuhan:

Fungsional: Sistem harus memungkinkan

admin untuk melakukan operasi CRUD penuh

pada data master (data mahasiswa). Sistem

harus memiliki mekanisme login sederhana

untuk membedakan antara admin dan pengguna

umum (read-only). [3].

Non-Fungsional: Sistem harus responsif,

memiliki antarmuka yang intuitif, dan dapat

berjalan pada server sumber daya yang

minimal. [4].

2. Perancangan Arsitektur Sistem:

Mengadopsi arsitektur three-tier

dengan teknologi: Node.js/Express.js

(Application Layer), MySQL (Data

Layer), dan HTML/CSS/JS

(Presentation Layer). [5].

3. Perancangan Basis Data: Membuat

Entity-Relationship Diagram (ERD)

untuk memodelkan entitas (, ,

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 831

`kategoriusersdata_mastercategories,)

dan hubungannya.activity_logs. [6].

4. Peranan API: Dalam arsitektur three-tier

yang diimplementasikan, Application

Programming Interface (API) bukan

sekadar komponen tambahan,

melainkan **jantung dari

lapisanjantung dari lapisan aplikasi

(Application Layer) dan kunci dari

efektivitas seluruh sistem. [7].

5. Implementasi Kode: Tahap implementasi

kode adalah fase di mana rencana

sistem diwujudkan dalam bentuk

perangkat lunak yang dapat

dilaksanakan. Proses ini dilakukan

secara sistematis dengan mengikuti

arsitektur three-tier yang telah

ditetapkan, memastikan batasan

tanggung jawab yang jelas antara

lapisan data, logika aplikasi, dan

presentasi. Kode ditulis dengan tekanan

pada keterbacaan, modularitas, dan

praktik keamanan dasar. [8].

6. Pengujian dan Integrasi: Setelah tahap

implementasi kode selesai, langkah

krusial berikutnya adalah melakukan

pengujian dan integrasi. Tujuan dari

tahap ini adalah untuk memastikan

bahwa setiap komponen perangkat

lunak, baik secara individu maupun

sebagai sebuah sistem yang

terintegrasi, berfungsi sesuai dengan

yang diharapkan. Pengujian dilakukan

secara sistematis untuk

mengidentifikasi, melacak, dan

memperbaiki bug atau ketidaksesuaian

sebelum sistem siap digunakan. [9].

3.2 Penyebaran Lingkungan

Untuk

• Sistem Operasi: Ubuntu 22

• Server Web: Tproksi terbalik .

• Lingkungan eksekusi: Node.

• Kerangka kerja: Express.js v4

• Data Dasar: MySQL

Penyebaran Proses:

1. Cloning repository Repositori

kloning

2. Instalasi depen npm install).

3. File konfigurasi.envuntuk

koneksi basis data dan

4. Menjalankaalat migrasi) atau

m

5. Pertahanan aplikasi

menggunakan atau lebih baik

lagi, menggunakan pro node

app.jspm2 start app.js) untuk

menjaga. [10].

4. HASIL DAN PEMBAHASAN

4.1 Hasil Perancangan Arsitektur Sistem

Arsitektur three-tier yang dirancang

diimplementasikan dengan teknologi yang telah

dipilih.

Gambar 1: Diagram Arsitektur Three-Tier

yang Diimplementasikan

1. Klien (Browser) mengirimkan

permintaanServer Aplikasi

(Node.js/Express) .

2. Server Aplikasi menerima permintaan,

memprosServer Basis Data (MySQL) .

3. Server Basis Data• query dan

mengServer Aplikasi.

4. Server Aplikasi memformat data

(biasanyaKlien .

5. Klienmenerima respons dan

Use Case Diagram

Use Berdasarkan analisis menunjukkan

Entitas.

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 832

Gambar 2: Diagram Entitas-Relasi (ERD)

Sistem

4.3 Hasil Implementasi API

API berhasdata_master.

Berkas: routes/dataRoutes.js

Gambar 2: Berkas:routes/dataRoutes.js

Gambar 3: (Contoh fungsi

)controllers/dataController.jscreateData

4.4 Hasil Prototipe Antarmuka Pengguna

Prototipe antarmuka pengguna (User

Interface - UI) dikembangkan dengan filosofi

desain yang berfokus pada pengguna (user-

centric), tekanan pada kemudahan penggunaan

(usability), kejernihan informasi, dan

responsivitas. Tujuannya adalah untuk

menciptakan antarmuka yang bercermin

sehingga pengguna, bahkan yang memiliki

kemampuan teknis terbatas, dapat dengan

mudah memahami dan menjalankan fungsi-

fungsi sistem. Antarmuka ini dibangun

menggunakan teknologi dasar web: HTML5

untuk struktur, CSS3 dengan pendekatan

mobile-first dan flexbox/grid untuk tata letak

yang fleksibel, serta JavaScript vanilla untuk

interaktivitas dinamis. Semua interaksi klien

dengan server aplikasi dilakukan secara

asinkron menggunakan API, yang

memungkinkan pembaruan data tanpa perlu

melakukan reload halaman penuh, sehingga

memberikan pengalaman pengguna yang lebih

cepat dan lebih lancar.fetch. [11].

Gambar 4 menunjukkan tampilan utama

dari dashboard admin, yang merupakan kendali

pusat untuk pengelolaan data.

Gambar 4: Dashboard Admin dengan Tabel

Data Master

Secara rinci, antarmuka pengguna ini terdiri

dari beberapa komponen dan alur kerja sebagai

berikut:

1. Header dan Navigasi Bagian atas

(header) dari antarmuka menampilkan judul

aplikasi, informasi pengguna yang sedang login

(misalnya, "Selamat datang, Admin"), dan

tombol untuk keluar (logout). Desain header

yang bersih memastikan identitas aplikasi dan

status pengguna selalu terlihat jelas.

2. Tabel Data Master Komponen utama

dari dashboard adalah tabel data yang

menampilkan semua record dari tabel di basis

data. Setiap baris mewakili satu entri data,

dengan kolom-kolom yang disesuaikan untuk

menampilkan informasi penting

seperti:data_master

• ID: Pengenal unik untuk setiap data.

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 833

• Nama: Nama utama dari entitas data

(misalnya, nama siswa).

• Kategori: Kategori tempat data tersebut

dikumpulkan, diambil dari tabel

.categories

• Tanggal Dibuat: Menunjukkan kapan

data tersebut pertama kali dimasukkan

ke sistem.

• Aksi: Kolom ini berisi tomEdit dan

**Hapus Hapus .

**3. Alu3. Alur Kerja Membuat dan

Mengedit Data (Create & Update) Untuk

priadialog modal .

• Membuat Data: Pengguna

priadata_master, seNama(masukan

t)Deskripsi(textarea), dan

`KategKategori(dropdown yang d

• Mengedit Data: Ketika pengguna

menekan tombol "EGET /api/data/:id.

MembentukPOST /api/datatidakPUT

/api/data/:iduntuk mengupdate). Jika

ser

**44. Alur Kerja Menghapus Data (Delete)

Aksi hapuconfirm()) akan muncul,

menaDELETEakan dDELETE /api/data/:idJika

berhasil, bar

5. Fitur Pencarian dan Filter Untuk

• Pencarian (Search): Sebuah masukan

• Filter Kategori: SeGET

/api/data?category_id=2) untuk

mengambil data yang sudah difilter,

sehingga lebih efisien untuk dataset

yang sangat besar. [12].

4.5 Pembahasan
Hasil dari perancangan dan implementasi ini

tidak hanya menunjukkan keberhasilan teknis,

tetapi juga memberikan wawasan mendalam

mengenai penerapan praktis konsep sistem

informasi dalam konteks yang sederhana.

Pembahasan akan mengupas signifikansi dari

setiap komponen yang dibangun, membahasnya

dengan masalah awal, dan memancarkan

esensinya.
4.5.1 Analisis Pemilihan Teknologi (Node.js

dan Express.js)

Keputusan untuk menggunakan Node.js dan

Express.js sebagai fondasi server aplikasi

terbukti sangat tepat dan sejalan dengan tujuan

penelitian, yaitu menciptakan solusi yang

ringan dan mudah dipahami bagi pemula. Sifat

non-blocking I/O dari Node.js memungkinkan

server untuk menangani banyak koneksi secara

bersamaan tanpa gangguan oleh operasi I/O

yang lambat seperti query basis data. Ini secara

implisit menjawab kebutuhan akan efisiensi

sumber daya, yang sering menjadi masalah di

instansi kecil dengan perangkat keras terbatas.

Berbeda dengan framework berat lainnya yang

memerlukan konfigurasi yang rumit (misalnya,

dependency injection container di Java Spring

atau struktur MVC yang kaku di beberapa

framework PHP), Express.js memberikan

harapan maksimal. Pengembang dapat

membangun aplikasi dari nol, menambahkan

hanya middleware yang diperlukan, dan

memahami alur data secara transparan dari

permintaan hingga respons. Hal ini secara

drastis mengurangi kurva pembelajaran,

membuat fokus tetap pada logika bisnis

daripada pada kompleksitas framework itu

sendiri, sebagaimana disarankan oleh Kim dan

Lee mengenai efisiensi virtualisasi ringan [3].

4.5.2 Implikasi Arsitektur Tiga Tingkat

Penerapan arsitektur three-tier bukanlah

sekadar pilihan teknis, melainkan sebuah

keputusan strategi yang berdampak langsung

pada kemudahan pemeliharaan dan

pengembangan sistem di masa depan.

Pemisahan yang jelas antara lapisan presentasi,

logika, dan data secara praktis berarti:

• Modularitas: Perubahan pada salah

satu lapisan tidak akan merusak lapisan

lain secara sistemik. Misalnya, jika tim

pengembang memutuskan untuk

mengubah tampilan antarmuka

pengguna dari situs web menjadi

aplikasi mobile, mereka hanya perlu

membangun kembali Presentation Tier

baru yang berkomunikasi dengan

Application Tier yang sudah ada.

Tingkat Aplikasi dan Tingkat Data

tidak perlu diubah.

• Skalabilitas: Setiap lapisan dapat

diskalakan secara independen. Jika

basis data menjadi bottleneck, data

basis server dapat ditingkatkan

(misalnya, dengan menambah RAM

atau menggunakan clustering database

) tanpa harus mengubah kode aplikasi

di server.

• Pembagian Tugas yang Jelas: Dalam

tim pengembangan, seorang

pengembang front-end dapat fokus

pada HTML, CSS, dan JavaScript,

sementara pengembang back-end fokus

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 834

pada logika API dan interaksi data

dasar. Ini meningkatkan efisiensi dan

spesialisasi kerja. [13].
Arsitektur ini secara langsung mengatasi

masalah sistem yang monolitik dan sulit

dipertahankan, yang seringkali menjadi hasil

dari pengembangan aplikasi yang terburu-buru

tanpa perencanaan yang matang.

4.5.3 Dampak pada Efektivitas Pengelolaan

Data

Prototipe yang dihasilkan secara langsung

memberikan solusi atas berbagai masalah yang

diidentifikasi pada proses pengelolaan data

manual:

• Mengurangi Kesalahan Input

(Human Error): Sistem

mengimplementasikan validasi data di

sisi server (dalam controller).

Misalnya, field "nama" tidak boleh

kosong, dan "email" harus mengikuti

format email yang valid. Ini mencegah

data tidak valid masuk ke data dasar,

sesuatu yang sulit dihindari dalam

penggunaan spreadsheet yang tidak

memiliki aturan validasi yang ketat.

• Menghilangkan Redundansi Data:

Dengan menggunakan basis data

relasional yang ternormalisasi (seperti

yang ditunjukkan pada ERD),

informasi seperti "kategori" disimpan

dalam satu tabel terpisah . Data master

hanya menyimpan kategori ID (). Hal

ini memastikan konsistensi data dan

menghemat ruang penyimpanan,

berbeda dengan spreadsheet di mana

nama kategori mungkin ditulis ulang

secara manual di setiap baris, yang

berisiko menyebabkan inkonsistensi

(misalnya, "Teknik Informatika" vs

"Tek.

Informatika").categoriescategory_id

• Meningkatkan Keamanan dan

Aksesibilitas: Data tidak lagi tersebar

di berbagai file spreadsheet yang

mungkin disimpan di komputer pribadi.

Semua data dimaksudkan di satu data

berbasis server. Akses ke data dikontrol

melalui API. Pengguna dengan peran

'user' hanya dapat membaca data

(Read-only), sementara 'admin'

memiliki hak penuh (CRUD). Laporan

aktivitas () menyediakan jejak audit

yang lengkap, mencatat siapa, kapan,

dan apa yang dilakukan terhadap data.

Ini adalah peningkatan keamanan dan

akuntabilitas yang mendasar

dibandingkan dengan sistem

manual.activity_logs. [6].

4.5.4 Keterbatasan dan Arah Pengembangan

Masa Depan

Meskipun berhasil mencapai tujuan, prototipe

ini memiliki batasan yang menjadi peluang

berharga untuk penelitian dan pengembangan

selanjutnya:

1. Keamanan Tingkat Lanjut: Sistem

saat ini menggunakan autentikasi

berbasis sesi sederhana. Untuk

lingkungan produksi yang lebih aman,

penerapan otentikasi berbasis token

seperti JWT (JSON Web Token) atau

integrasi dengan penyedia identitas

pihak ketiga (OAuth 2.0) menjadi suatu

keharusan.

2. Pengujian Performa (Load Testing):

Sistem belum diuji dalam kondisi

beban tinggi. Penelitian selanjutnya

dapat melakukan pengukuran beban

menggunakan alat seperti Apache

JMeter atau Artillery untuk mengukur

berapa banyak permintaan secara

bersamaan yang dapat ditangani server

sebelum waktu respons melambat.

3. Deployment pada Cloud: Penelitian

ini hanya mendemonstrasikan

deployment di server lokal. Langkah

logis berikutnya adalah mengeksplorasi

proses penerapan pada layanan cloud

(seperti AWS EC2, Google Cloud

Compute Engine, atau Heroku) untuk

memahami tantangan dan manfaat dari

skalabilitas dan ketersediaan tinggi

yang ditawarkan oleh cloud.

4. Fitur Pelaporan dan Analitik: Saat

ini, sistem hanya menampilkan data

dalam bentuk tabel. Pengembangan

fitur untuk membuat laporan (misalnya,

laporan PDF) atau visualisasi data

(grafik dan diagram) akan

meningkatkan nilai aplikasi secara

signifikan. [14].

5. KESIMPULAN

Berdasarkan keseluruhan penelitian yang telah

dilakukan, mulai dari perancangan konsep

hingga implementasi dan deployment prototipe,

dapat disimpulkan secara tegas bahwa

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 835

penelitian ini telah berhasil membuktikan

bahwa server aplikasi yang sederhana, ringan,

dan efektif dapat dibangun menggunakan

teknologi modern yang mudah diakses. Model

yang dikembangkan memberikan jawaban

komprehensif atas tantangan pengelolaan data

di lingkungan skala kecil dan pendidikan,

sekaligus berfungsi sebagai panduan

pembelajaran yang praktis.

Penelitian ini menjawab secara langsung

rumusan masalah yang dikemukakan di awal:

1. Bagaimana merancang dan

mengimplementasikan arsitektur

server aplikasi yang sederhana?

Jawabannya adalah dengan

mengadopsi arsitektur three-tier yang

memisahkan tanggung jawab secara

jelas, dan mengimplementasikannya

menggunakan stack teknologi Node.js,

Express.js, dan MySQL. Detail

perancangan, mulai dari ERD hingga

endpoint API, telah dipaparkan secara

lengkap dalam makalah ini.

2. Komponen-komponen apa saja yang

diperlukan? Komponen-komponen

esensial tersebut meliputi: (a) Skema

basis data relasional yang

ternormalisasi untuk memastikan

integritas data, (b) Kumpulan endpoint

RESTful API yang mengatur operasi

CRUD, (c) Lapisan logika bisnis

(controller) yang memproses validasi

dan aturan, (d) antarmuka pengguna

(front-end) yang responsif dan

komunikatif, serta (e) Laporan audit

untuk pelacakan aktivitas.

3. Bagaimana cara melakukan

penerapan? Proses deployment telah

didemonstrasikan pada lingkungan

server lokal Ubuntu, meliputi instalasi

dependensi, konfigurasi variabel

lingkungan, dan manajemen proses

aplikasi, yang berfungsi sebagai

panduan praktis bagi pemula.

4. Betapa efektifnya prototipe yang

dihasilkan? Prototipe ini terbukti jauh

lebih efektif daripada metode manual

dengan secara signifikan mengurangi

kesalahan input data melalui validasi,

menghilangkan redundansi data

melalui normalisasi data dasar,

meningkatkan keamanan melalui

kontrol akses ringkas, dan

mempercepat akses informasi melalui

antarmuka sepertinya yang responsif.

Kontribusi utama dari penelitian ini adalah dua

kali lipat. Pertama, secara praktis, dihasilkan

sebuah prototipe fungsional yang dapat

langsung diadopsi atau dikembangkan lebih

lanjut oleh instansi kecil. Kedua, secara teoretis

dan edukatif, disajikan sebuah dokumentasi

end-to-end yang lengkap dan terstruktur, mulai

dari analisis kebutuhan hingga penerapan, yang

dapat dijadikan bahan ajar atau referensi utama

bagi pelajar dan praktisi pemula yang ingin

mempelajari fondasi pengembangan sistem

informasi berbasis server. [15].

Meskipun demikian, penelitian ini membuka

pintu bagi pengembangan lebih lanjut di bidang

keamanan siber, optimasi kinerja, dan

pemanfaatan infrastruktur awan. Dengan

landasan yang telah dibangun, penelitian

selanjutnya dapat fokus pada aspek-aspek

lanjutan tersebut untuk menciptakan sistem

yang tidak hanya sederhana, tetapi juga tangguh

dan siap menghadapi tantangan skala

perusahaan.

berkelanjutan.

UCAPAN TERIMA KASIH

Penulis menyampaikan terima kasih kepada

semua pihak yang telah memberikan dukungan

dalam proses penyusunan penelitian ini, baik

berupa bantuan pemikiran, arahan, motivasi,

maupun fasilitas yang diberikan. Ucapan terima

kasih juga disampaikan kepada dosen

pembimbing yang telah memberikan panduan

serta masukan yang sangat berarti, rekan-rekan

yang turut membantu dalam pengumpulan

referensi, serta lingkungan akademik yang

menyediakan suasana kondusif untuk belajar

dan meneliti. Seluruh kontribusi tersebut sangat

membantu penulis dalam menyelesaikan

penelitian ini dengan baik.

DAFTAR PUSTAKA
[1] D. Wijaya dan L. Fajar, "Implementasi REST

API untuk integrasi sistem informasi berbasis

web," Jurnal Teknologi dan Sistem Informasi ,

vol. 7, tidak. 1, hlm. 22–30, 2021.

[2] B. Santoso dan R. Sari, "Optimasi manajemen

basis data menggunakan model server

singkatnya," Jurnal Informasi dan Komputasi

, vol. 9, tidak. 3, hlm.144–153, 2022.

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

 836

[3] H. Kim dan S. Lee, "Virtualisasi ringan untuk

penyebaran server skala kecil," IEEE Access ,

vol. 9, hlm. 55123–55134, 2021.

[4] B. Oetomo, "Konsep dasar sistem informasi

dalam pengelolaan data modern," Jurnal

Sistem Informasi , vol. 14, tidak. 2, hal.55–63,

2018.

[5] D. Wijaya dan L. Fajar, "Perancangan server

aplikasi untuk pengelolaan logika bisnis web,"

Jurnal Teknologi dan Sistem Informasi , vol. 7,

tidak. 1, hlm. 22–30, 2021.

[6] A. Rahman dan Y. Pratama, "Implementasi

arsitektur three-tier pada sistem informasi

terintegrasi," Jurnal Rekayasa Teknologi

Informasi , vol. 5, tidak. 2, hal.101–109, 2020.

[7] B. Santoso dan R. Sari, "Penerapan model CRUD

dalam pengembangan aplikasi berbasis web,"

Jurnal Informasi dan Komputasi , vol. 9, tidak.

3, hlm.144–153, 2022.

[8] DM Kroenke dan DJ Auer, Pemrosesan Basis

Data: Dasar-dasar, Desain, dan Implementasi

, edisi ke-14. Pearson, 2019.

[9] AS Tanenbaum dan M. Van Steen, Sistem

Terdistribusi: Prinsip dan Paradigma , edisi

ke-3. Prentice Hall, 2016.

[10] W. Stallings, Sistem Operasi: Internal dan

Prinsip Desain , edisi ke-9. Pearson, 2018.

[11] RS Pressman, Rekayasa Perangkat Lunak:

Pendekatan Praktisi . McGraw-Hill, 2014.

[12] L. Bass, P. Clements, dan R. Kazman,

Arsitektur Perangkat Lunak dalam Praktik ,

edisi ke-3. Addison-Wesley, 2013.

[13] J. Heizer dan B. Render, Manajemen Operasi ,

edisi ke-11. Pearson, 2017.

[14] D. Oaks dan J. Smith, "Desain server yang

efisien untuk aplikasi pemrosesan data ringan,"

Jurnal Internasional Aplikasi Komputer , vol.

182, no. 35, hlm. 1–10, 2019.

[15] A. Rahman dan F. Yuliani, "Model server

aplikasi terpusat untuk meningkatkan efisiensi

manajemen data," Jurnal Penelitian Sistem

Informasi , vol. 12, no. 2, hlm. 55–64, 2020.

