ISSN: 2303057

9 J I T ET J

JITET (Jurnal Informatika dan Teknik Elektro Terapan) .
Vol. 14 No. 1, pISSN: 2303-0577 eISSN: 2830-7062 http://dx.doi.org/10.23960/jitet.v14i1.8790

PERANCANGAN SERVER APLIKASI SEDERHANA
GUNA MENINGKATKAN EFEKTIVITAS PENGELOLAAN
DATA

Mohammad Agil'", Imron Sodikin?, Ulil Absor®, A. Hamdani *

LProgram Studi Sistem Informasi Fakultas Sains dan Teknologi, Universitas Ibrahimy,Situbondo
*Program Studi Sistem Informasi Fakultas Sains dan Teknologi, Universitas Ibrahimy,Situbondo

Keywords: Abstrak. Penelitian ini menyajikan perancangan dan implementasi konsep
Server aplikasi, pengelolaan dari sebuah server aplikasi sederhana yang bertujuan untuk mendukung proses
data, perancangan sistem, dasar pengelolaan data, khususnya di lingkungan pendidikan atau instansi
arsitektur tiga tingkat, skala kecil. Kebutuhan akan sistem informasi yang terstruktur menuntut
CRUD, RESTful API pemahaman yang jelas mengenai peran server aplikasi sebagai penghubung

antara permintaan klien dengan penyimpanan data. Banyak penelitian
terdahulu cenderung berfokus pada implementasi dan konfigurasi tingkat
lanjut yang kompleks, sehingga menyulitkan pemula untuk memahami konsep
dasar. Oleh karena itu, penelitian ini bertujuan untuk mengisi keselarasan
tersebut dengan menyediakan rancangan server aplikasi yang konseptual,
ringan, dan mudah diterapkan. Metodologi penelitian mengadopsi pendekatan
rekayasa sistem, yang meliputi tahapan analisis kebutuhan fungsional dan
non-fungsional, perancangan arsitektur sistem three-tier (klien, server
aplikasi, server basis data), pemodelan alur data menggunakan Entity-
Relationship Diagram (ERD), dan perancangan Application Programming
Interface (API) berbasis RESTful untuk operasi CRUD (Create, Read, Update,
Delete). Hasil perancangan menunjukkan bahwa arsitektur yang diusulkan
mampu mendukung aktivitas pengelolaan data secara efektif tanpa
memerlukan implementasi yang kompleks. Sebagai studi kasus, dirancang
sebuah sistem pengelolaan data siswa sederhana dengan antarmuka pengguna
dasar. Model konsepsi dan implementasi parsial ini diharapkan dapat menjadi
referensi awal yang komprehensif bagi pelajar, pengembang pemula, maupun
instansi kecil yang ingin memahami dan membangun fondasi sistem informasi
berbasis server yang efektif dan efisien.

Corespondent Email:
mohagil040@gmail.com

Abstract. his study presents the design and implementation of the concept of
a simple application server intended to support basic data management
Copyrigh © . JITET (lurnal processes, particulalfly in educational e.nvironm.ents or small—.scale
Informatika dan Teknik Elektro Pstitutions. The growing need for structured information systems requires a
Terapan). This article is an open clear understanding of the role of an application server as an intermediary
access article distributed under between client requests and data storage. Many previous studies tend to focus
terms and conditions of the oy complex, advanced-level implementations and configurations, which often
(Ccrgalt?l’\\/(eNCC):ommons Attribution ke it difficult for beginners to grasp the fundamental concepts. Therefore,
this study aims to address this gap by providing a conceptual, lightweight, and
easy-to-implement application server design.The research methodology
adopts a systems engineering approach, which includes the stages of
functional and non-functional requirements analysis, three-tier system
architecture design (client, application server, and database server), data flow
modeling using an Entity-Relationship Diagram (ERD), and the design of a
RESTful Application Programming Interface (API) for CRUD (Create, Read,
Update, Delete) operations.The design results indicate that the proposed

828

mailto:mohagil040@gmail.com
https://journal.eng.unila.ac.id/index.php/jitet/index

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

architecture is capable of effectively supporting data management activities
without requiring complex implementation. As a case study, a simple student
data management system with a basic user interface is designed. This
conceptual model and partial implementation are expected to serve as a
comprehensive introductory reference for students, beginner developers, and
small institutions seeking to understand and build an effective and efficient
server-based information system foundation.

1. PENDAHULUAN

Di era digitalisasi, kemampuan untuk
mengelola data secara sistematis, cepat, dan
akurat telah menjadi fondasi utama bagi
kemajuan suatu organisasi, baik itu lembaga
pemerintahan, swasta, maupun institusi
pendidikan. Proses manajemen data yang
manual, misalnya menggunakan lembar kerja
spreadsheet atau bahkan arsip kertas, rentan
terhadap berbagai masalah seperti kesalahan
input data, redundansi informasi, keamanan
yang terbatas, dan proses akses yang tidak
efisien. Untuk mengatasi tantangan ini,
diperlukan sebuah sistem informasi yang
terstruktur dan andal

Pada inti dari setiap sistem informasi
berbasis web modern terdapat server aplikasi
(server aplikasi). Server aplikasi berfungsi
sebagai middleware atau perantara krusial yang
bertanggung jawab atas pengiriman logika
bisnis. la menerima permintaan dari klien
(browser pengguna), memproses permintaan
tersebut, berinteraksi dengan basis data untuk
mengambil atau menyimpan informasi, dan
kemudian mengirimkan kembali respon yang
sesuai kepada pengguna [1]. Tanpa adanya
server aplikasi yang dirancang dengan baik,
komunikasi antara antarmuka pengguna dan
lapisan penyimpanan data akan menjadi kacau
dan tidak efisien.

Berbagai penelitian sebelumnya telah
banyak membahas pengembangan sistem
informasi dan arsitektur server. Penelitian di
bidang sistem integrasi, misalnya, telah
menunjukkan pentingnya peran server sebagai
perantara utama dalam pertukaran data
menggunakan layanan seperti REST API [1].
Di sisi lain, kajian lain menekankan pada
optimalisasi manajemen data dasar melalui
server model yang dimaksudkan untuk
meningkatkan efisiensi akses dan keamanan
data [2]. Namun, sebagian besar penelitian ini
cenderung berfokus pada implementasi tingkat
lanjut, penggunaan kerangka kerja tertentu yang

829

kompleks, atau konfigurasi server untuk
lingkungan produksi berskala besar. Fokus ini
sering kali mengabaikan kebutuhan para
pemula—mahasiswa, pengembang perangkat
lunak yang baru memulai, atau staf IT di
instansi kecil—yang memerlukan pemahaman
mendasar mengenai cara kerja server aplikasi
sebelum melangkah ke konfigurasi yang lebih
rumit.

State of the art dalam bidang ini
menunjukkan bahwa terdapat uraian mengenai
desain server aplikasi sederhana secara
konseptual yang disertai dengan contoh
implementasi yang mudah dipahami. Padahal,
arsitektur server yang sederhana dan ringan
sangat relevan untuk kebuvirtualisasi ringan .

2. TINJAUAN PUSTAKA

Tinjauan pustaka pada penelitian ini
membahas konsep-konsep fundamental yang
menjadi landasan teoritis dalam perancangan
dan implementasi server aplikasi sederhana.

1.2.1 Server Aplikasi dan Arsitektur
Tiga Tingkat

Server aplikasi adalah perangkat lunak
middleware yang menyediakan lingkungan
untuk menjalankan aplikasi, khususnya aplikasi
berbasis web. Tugas utamanya adalah
mengelola logika bisnis dari aplikasi. Ia
bertindak sebagai perantara antara klien
(biasanya browser web) dan sumber daya lain
seperti basis data atau layanan eksternal [5].
Server aplikasi menangani berbagai tugas
kompleks seperti manajemen sesi pengguna,
validasi data, eksekusi transaksi, dan
pengelolaan koneksi ke data dasar.

Untuk memastikan server aplikasi berjalan
secara optimal, diperlukan arsitektur yang
terstruktur. Arsitektur three-tier (tiga lapisan)
adalah model arsitektur perangkat lunak yang
memisahkan aplikasi menjadi tiga lapisan
logistik dan fisik yang berbeda [6]. Model ini
dirancang untuk meningkatkan skalabilitas,

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

ketidaknyamanan, dan pemeliharaan. Tiga
lapisan tersebut adalah:
2. Tingkat Presentasi (Lapisan

Presentasi): antarmuka pengguna (UI)
yang berinteraksi langsung dengan
pengguna. Dalam aplikasi web, lapisan
ini dijalankan di browser klien.

3. Tingkat Aplikasi (Lapisan
Aplikasi/Logika): Inti dari aplikasi, di
mana seluruh logika bisnis berada.
Lapisan ini dijalankan pada server
aplikasi.

4. Data Tier (Lapisan Data): Bertanggung
jawab untuk menyimpan, mengelola,
dan mengakses data. Biasanya terdiri
dari sistem manajemen basis data
(DBMS).

Pemisahan ini memungkinkan pengembang
untuk memperbarui satu lapisan tanpa
mengubah lapisan lain secara signifikan.

5.2.2 Operasi CRUD dan RESTful API

CRUD adalah singkatan dari empat operasi
dasar yang paling umum digunakan dalam
pengelolaan data persisten: Create , Read ,
Update , dan Delete [7]. Setiap sistem
pengelolaan data yang kompleks pada dasarnya
dibangun di atas kombinasi dari keempat
operasi ini.

Untuk menghubungkan lapisan aplikasi
dengan lapisan data, pendekatan modern yang
paling populer adalah menggunakan RESTful
API (Representational State Transfer). REST
adalah gaya arsitektur untuk mendesain aplikasi
terdistribusi. API yang mematuhinya disebut
RESTful API. API ini menggunakan metode
HTTP standar (GET untuk Read, POST untuk
Create, PUT/PATCH untuk Update, dan
DELETE untuk Delete) untuk melakukan
operasi CRUD [1]. Penggunaan RESTful API
memungkinkan komunikasi yang jelas,
stateless (tidak menyimpan status sesi di sisi
server), dan skalabel antara klien dan server.

6.2.3 Node.js dan Express.js

Node.js adalah lingkungan runtime
JavaScript sisi server yang bersifat open-source
dan cross-platform Node.js menjalankan
mesin JavaScript V8 (mesin yang sama dengan
Google Chrome) di luar browser, yang
memungkinkan pengembang untuk
menggunakan JavaScript untuk menulis alat
baris perintah dan skrip sisi server |[3].
Keunggulan utama Node.js adalah model /O
non-blocking dan berbasis event-driven , yang

830

membuatnya sangat ringan dan efisien untuk
aplikasi yang bersifat real-time dan data-
intensif.

Express.js adalah kerangka kerja (
framework) aplikasi web minimalis dan
fleksibel untuk Node.js. Express menyediakan
sekumpulan fitur yang kuat untuk aplikasi web
dan mobile, mempermudah proses pembuatan
API, routing, middleware, dan penanganan
permintaan HTTP. Karena sifatnya yang
minimalis, Express tidak memaksakan struktur
tertentu, memberikan kebebasan bagi
pengembang untuk merancang arsitektur
aplikasi mereka sendiri, yang menjadikannya
pilihan ideal untuk proyek-proyek sederhana
dan bagi pemula [3].

3. METODE PENELITIAN
3.1 Rancangan Penelitian

Penelitian Penelitian ini menggunakan
metode deskriptif kualitatif dengan pendekatan
rekayasa sistem. Pendekatan ini dipilih karena
tujuan utamanya adalah merancang,
membangun, dan mendemonstrasikan sebuah
prototipe sistem. Proses penelitian ini dibagi
beberapa menjadi tahapan sistematis. [1]. [2].

3.1 Tahapan Perancangan dan
Implementasi Sistem
Proses perancangan dan implementasi

mengikuti model iteratif sederhana, dengan
fokus pada penghasilan artefak desain yang
jelas pada setiap tahap.
1. Analisis Kebutuhan:
Fungsional: Sistem harus memungkinkan
admin untuk melakukan operasi CRUD penuh
pada data master (data mahasiswa). Sistem
harus memiliki mekanisme login sederhana
untuk membedakan antara admin dan pengguna
umum (read-only). [3].
Non-Fungsional: Sistem harus responsif,
memiliki antarmuka yang intuitif, dan dapat
berjalan pada server sumber daya yang
minimal. [4].
2.Perancangan Arsitektur Sistem:
Mengadopsi arsitektur three-tier
dengan teknologi: Node.js/Express.js
(Application Layer), MySQL (Data
Layer), dan HTML/CSS/JS
(Presentation Layer). [5].
3.Perancangan Basis Data: Membuat
Entity-Relationship Diagram (ERD)
untuk memodelkan entitas (, ,

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

‘kategoriusersdata mastercategories,)
dan hubungannya.activity logs. [6].

4. Peranan API: Dalam arsitektur three-tier
yang diimplementasikan, Application
Programming Interface (API) bukan
sekadar komponen tambahan,
melainkan **jantung dari
lapisanjantung dari lapisan aplikasi
(Application Layer) dan kunci dari
efektivitas seluruh sistem. [7].

5. Implementasi Kode: Tahap implementasi
kode adalah fase di mana rencana
sistem diwujudkan dalam bentuk
perangkat lunak yang dapat
dilaksanakan. Proses ini dilakukan
secara sistematis dengan mengikuti
arsitektur three-tier yang telah
ditetapkan, = memastikan batasan
tanggung jawab yang jelas antara
lapisan data, logika aplikasi, dan
presentasi. Kode ditulis dengan tekanan
pada keterbacaan, modularitas, dan
praktik keamanan dasar. [8].

6. Pengujian dan Integrasi; Setelah tahap
implementasi kode selesai, langkah
krusial berikutnya adalah melakukan
pengujian dan integrasi. Tujuan dari
tahap ini adalah untuk memastikan
bahwa setiap komponen perangkat
lunak, baik secara individu maupun
sebagai sebuah sistem yang
terintegrasi, berfungsi sesuai dengan
yang diharapkan. Pengujian dilakukan
secara sistematis untuk
mengidentifikasi, melacak, dan
memperbaiki bug atau ketidaksesuaian
sebelum sistem siap digunakan. [9].

3.2 Penyebaran Lingkungan

Untuk

¢ Sistem Operasi: Ubuntu 22

e Server Web: Tproksi terbalik .

¢ Lingkungan eksekusi: Node.

o Kerangka kerja: Express.js v4

e Data Dasar: MySQL
Penyebaran Proses:

1. Cloning repository Repositori

kloning
2. Instalasi depen npm install).
3. File konfigurasi.envuntuk

koneksi basis data dan
4. Menjalankaalat migrasi) atau
m

5. Pertahanan aplikasi
menggunakan atau lebih baik
lagi, menggunakan pro node
app.jspm2 start app.js) untuk
menjaga. [10].

4. HASIL DAN PEMBAHASAN

4.1 Hasil Perancangan Arsitektur Sistem
Arsitektur three-tier yang dirancang

diimplementasikan dengan teknologi yang telah

dipilih.

S Client HTTP Request nlication Serve Eatabaseiu,ery,, Database Server
Z/ (Browser) \ /E Query Result Server (MySQL)

1. Client sends request 2. App Server processes, HTTP Response server
to App Server queries DB (HTML/JSON)

5. Client receives & 3. App Server processes DB 4. App Aerver formats,
displays response queries DB sends response to Client

Gambar 1: Diagram Arsitektur Three-Tier
yang Diimplementasikan

1. Klien (Browser) mengirimkan
permintaanServer Aplikasi
(Node.js/Express) .

2.Server Aplikasi menerima permintaan,
memprosServer Basis Data (MySQL) .
3.Server Basis Datas query dan
mengServer Aplikasi.
4.Server Aplikasi memformat data
(biasanyaKlien .
5. Klienmenerima respons dan
Use Case Diagram
Use Berdasarkan analisis menunjukkan
Entitas.

831

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

System Entity-Relationship Diagram (ERD)

users categories

1 one user can create O O =
id (PK) id
username has many name

g

data_master
id (PK) (PK)
user_id (FK) categoryi (FK)
title content
title created_at
updated_at

Z

users

One user can create |« } has many

updated_at

M

activity_logs

user_i_id (FK)
activity_type
timestrom

user_id (PK) 1
activity_type
description

[iN

records activity

The system records all activity from users

Gambar 2: Diagram Entitas-Relasi (ERD)
Sistem

4.3 Hasil Implementasi API
API berhasdata_master.
Berkas: routes/dataRoutes.js

ler.deleteData);

medule. exports = router;

Gambar 2: Berkas:routes/dataRoutes.js

st db = require(

b

Gambar 3:

(Contoh
Jcontrollers/dataController.jscreateData
4.4 Hasil Prototipe Antarmuka Pengguna

fungsi

Prototipe antarmuka pengguna (User
Interface - Ul) dikembangkan dengan filosofi
desain yang berfokus pada pengguna (user-
centric), tekanan pada kemudahan penggunaan

(wusability), kejernihan informasi, dan
responsivitas. Tujuannya adalah untuk
menciptakan antarmuka yang bercermin

sehingga pengguna, bahkan yang memiliki

832

kemampuan teknis terbatas, dapat dengan
mudah memahami dan menjalankan fungsi-
fungsi sistem. Antarmuka ini dibangun
menggunakan teknologi dasar web: HTMLS
untuk struktur, CSS3 dengan pendekatan
mobile-first dan flexbox/grid untuk tata letak
yang fleksibel, serta JavaScript vanilla untuk
interaktivitas dinamis. Semua interaksi klien
dengan server aplikasi dilakukan secara
asinkron menggunakan API, yang
memungkinkan pembaruan data tanpa perlu
melakukan reload halaman penuh, sehingga
memberikan pengalaman pengguna yang lebih
cepat dan lebih lancar fetch. [11].

Gambar 4 menunjukkan tampilan utama
dari dashboard admin, yang merupakan kendali
pusat untuk pengelolaan data.

Sistem Pengelooaal Data
mmmmmm

‘‘‘‘‘‘‘‘‘

Daftar Dsta

Pongaturan / User Management

Gambar 4: Dashboard Admin dengan Tabel
Data Master

Secara rinci, antarmuka pengguna ini terdiri
dari beberapa komponen dan alur kerja sebagai
berikut:

1. Header dan Navigasi Bagian atas
(header) dari antarmuka menampilkan judul
aplikasi, informasi pengguna yang sedang login
(misalnya, "Selamat datang, Admin"), dan
tombol untuk keluar (logout). Desain header
yang bersih memastikan identitas aplikasi dan
status pengguna selalu terlihat jelas.

2. Tabel Data Master Komponen utama
dari dashboard adalah tabel data yang
menampilkan semua record dari tabel di basis
data. Setiap baris mewakili satu entri data,
dengan kolom-kolom yang disesuaikan untuk
menampilkan informasi penting
seperti:data_master

¢ ID: Pengenal unik untuk setiap data.

Log Aktivitas

ecoeovo

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

e Nama: Nama utama dari entitas data
(misalnya, nama siswa).

o Kategori: Kategori tempat data tersebut
dikumpulkan, diambil dari tabel
.categories

e Tanggal Dibuat: Menunjukkan kapan
data tersebut pertama kali dimasukkan
ke sistem.

e Aksi: Kolom ini berisi tomEdit dan
**Hapus Hapus .

**3. Alu3. Alur Kerja Membuat dan

Mengedit Data (Create & Update) Untuk

priadialog modal .
e Membuat Data: Pengguna
priadata_master, seNama(masukan
t)Deskripsi(textarea), dan

‘KategKategori(dropdown yang d

e Mengedit Data: Ketika pengguna
menekan tombol "EGET /api/data/:id.
MembentukPOST /api/datatidakPUT
/api/data/:iduntuk mengupdate). Jika
ser

**44. Alur Kerja Menghapus Data (Delete)

Aksi hapuconfirm()) akan muncul,

menaDELETEakan dDELETE /api/data/:idJika
berhasil, bar
5. Fitur Pencarian dan Filter Untuk
¢ Pencarian (Search): Sebuah masukan
o Filter Kategori: SeGET
/api/data?category id=2) untuk
mengambil data yang sudah difilter,
sehingga lebih efisien untuk dataset
yang sangat besar. [12].

4.5 Pembahasan

Hasil dari perancangan dan implementasi ini
tidak hanya menunjukkan keberhasilan teknis,
tetapi juga memberikan wawasan mendalam
mengenai penerapan praktis konsep sistem
informasi dalam konteks yang sederhana.
Pembahasan akan mengupas signifikansi dari
setiap komponen yang dibangun, membahasnya
dengan masalah awal, dan memancarkan
esensinya.

4.5.1 Analisis Pemilihan Teknologi (Node.js
dan Express.js)

Keputusan untuk menggunakan Node.js dan
Express.js sebagai fondasi server aplikasi
terbukti sangat tepat dan sejalan dengan tujuan
penelitian, yaitu menciptakan solusi yang
ringan dan mudah dipahami bagi pemula. Sifat
non-blocking 1/0 dari Node.js memungkinkan
server untuk menangani banyak koneksi secara

bersamaan tanpa gangguan oleh operasi 1/O
yang lambat seperti query basis data. Ini secara
implisit menjawab kebutuhan akan efisiensi
sumber daya, yang sering menjadi masalah di
instansi kecil dengan perangkat keras terbatas.
Berbeda dengan framework berat lainnya yang
memerlukan konfigurasi yang rumit (misalnya,
dependency injection container di Java Spring
atau struktur MVC yang kaku di beberapa
framework PHP), Express.js memberikan
harapan maksimal. Pengembang dapat
membangun aplikasi dari nol, menambahkan
hanya middleware yang diperlukan, dan
memahami alur data secara transparan dari
permintaan hingga respons. Hal ini secara
drastis mengurangi kurva pembelajaran,
membuat fokus tetap pada logika bisnis
daripada pada kompleksitas framework itu
sendiri, sebagaimana disarankan oleh Kim dan
Lee mengenai efisiensi virtualisasi ringan [3].
4.5.2 Implikasi Arsitektur Tiga Tingkat
Penerapan arsitektur three-tier bukanlah
sekadar pilihan teknis, melainkan sebuah
keputusan strategi yang berdampak langsung
pada kemudahan pemeliharaan dan
pengembangan sistem di masa depan.
Pemisahan yang jelas antara lapisan presentasi,
logika, dan data secara praktis berarti:

e Modularitas: Perubahan pada salah
satu lapisan tidak akan merusak lapisan
lain secara sistemik. Misalnya, jika tim
pengembang memutuskan untuk
mengubah tampilan antarmuka
pengguna dari situs web menjadi
aplikasi mobile, mereka hanya perlu
membangun kembali Presentation Tier
baru yang berkomunikasi dengan
Application Tier yang sudah ada.
Tingkat Aplikasi dan Tingkat Data
tidak perlu diubah.

e Skalabilitas: Setiap lapisan dapat
diskalakan secara independen. Jika
basis data menjadi bottleneck, data
basis server dapat ditingkatkan
(misalnya, dengan menambah RAM
atau menggunakan clustering database
) tanpa harus mengubah kode aplikasi

di server.
e Pembagian Tugas yang Jelas: Dalam
tim pengembangan, seorang

pengembang front-end dapat fokus
pada HTML, CSS, dan JavaScript,
sementara pengembang back-end fokus

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

pada logika API dan interaksi data
dasar. Ini meningkatkan efisiensi dan
spesialisasi kerja. [13].
Arsitektur ini secara langsung mengatasi
masalah sistem yang monolitik dan sulit
dipertahankan, yang seringkali menjadi hasil
dari pengembangan aplikasi yang terburu-buru
tanpa perencanaan yang matang.
4.5.3 Dampak pada Efektivitas Pengelolaan
Data
Prototipe yang dihasilkan secara langsung
memberikan solusi atas berbagai masalah yang
diidentifikasi pada proses pengelolaan data
manual:

e Mengurangi Kesalahan Input
(Human Error): Sistem
mengimplementasikan validasi data di
sisi server (dalam controller).

Misalnya, field "nama" tidak boleh
kosong, dan "email" harus mengikuti
format email yang valid. Ini mencegah
data tidak valid masuk ke data dasar,
sesuatu yang sulit dihindari dalam
penggunaan spreadsheet yang tidak
memiliki aturan validasi yang ketat.

e Menghilangkan Redundansi Data:
Dengan menggunakan basis data
relasional yang ternormalisasi (seperti
yang ditunjukkan pada ERD),
informasi seperti "kategori" disimpan
dalam satu tabel terpisah . Data master
hanya menyimpan kategori ID (). Hal
ini memastikan konsistensi data dan
menghemat ruang penyimpanan,
berbeda dengan spreadsheet di mana
nama kategori mungkin ditulis ulang
secara manual di setiap baris, yang
berisiko menyebabkan inkonsistensi
(misalnya, "Teknik Informatika" vs
"Tek.
Informatika").categoriescategory id

e Meningkatkan Keamanan dan
Aksesibilitas: Data tidak lagi tersebar
di berbagai file spreadsheet yang
mungkin disimpan di komputer pribadi.
Semua data dimaksudkan di satu data
berbasis server. Akses ke data dikontrol
melalui API. Pengguna dengan peran
'user' hanya dapat membaca data
(Read-only), sementara 'admin’
memiliki hak penuh (CRUD). Laporan
aktivitas () menyediakan jejak audit
yang lengkap, mencatat siapa, kapan,

834

dan apa yang dilakukan terhadap data.
Ini adalah peningkatan keamanan dan
akuntabilitas yang mendasar
dibandingkan dengan sistem
manual.activity logs. [6].
4.5.4 Keterbatasan dan Arah Pengembangan
Masa Depan
Meskipun berhasil mencapai tujuan, prototipe
ini memiliki batasan yang menjadi peluang
berharga untuk penelitian dan pengembangan

selanjutnya:
1. Keamanan Tingkat Lanjut: Sistem
saat ini menggunakan autentikasi
berbasis sesi sederhana. Untuk

lingkungan produksi yang lebih aman,
penerapan otentikasi berbasis token
seperti JWT (JSON Web Token) atau
integrasi dengan penyedia identitas
pihak ketiga (OAuth 2.0) menjadi suatu
keharusan.

2. Pengujian Performa (Load Testing):
Sistem belum diuji dalam kondisi
beban tinggi. Penelitian selanjutnya
dapat melakukan pengukuran beban
menggunakan alat seperti Apache
JMeter atau Artillery untuk mengukur
berapa banyak permintaan secara
bersamaan yang dapat ditangani server
sebelum waktu respons melambat.

3. Deployment pada Cloud: Penelitian
ini hanya mendemonstrasikan
deployment di server lokal. Langkah
logis berikutnya adalah mengeksplorasi
proses penerapan pada layanan cloud
(seperti AWS EC2, Google Cloud
Compute Engine, atau Heroku) untuk
memahami tantangan dan manfaat dari
skalabilitas dan ketersediaan tinggi
yang ditawarkan oleh cloud.

4. Fitur Pelaporan dan Analitik: Saat
ini, sistem hanya menampilkan data
dalam bentuk tabel. Pengembangan
fitur untuk membuat laporan (misalnya,
laporan PDF) atau visualisasi data
(grafik dan diagram) akan
meningkatkan nilai aplikasi secara
signifikan. [14].

5. KESIMPULAN

Berdasarkan keseluruhan penelitian yang telah
dilakukan, mulai dari perancangan konsep
hingga implementasi dan deployment prototipe,
dapat disimpulkan secara tegas bahwa

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

penelitian ini telah berhasil membuktikan
bahwa server aplikasi yang sederhana, ringan,
dan efektif dapat dibangun menggunakan
teknologi modern yang mudah diakses. Model
yang dikembangkan memberikan jawaban
komprehensif atas tantangan pengelolaan data
di lingkungan skala kecil dan pendidikan,
sekaligus berfungsi sebagai panduan
pembelajaran yang praktis.

Penelitian ini menjawab secara langsung
rumusan masalah yang dikemukakan di awal:

1. Bagaimana merancang dan
mengimplementasikan arsitektur
server aplikasi yang sederhana?
Jawabannya adalah dengan
mengadopsi arsitektur three-tier yang
memisahkan tanggung jawab secara
jelas, dan mengimplementasikannya
menggunakan stack teknologi Node.js,
Express.js, dan MySQL. Detail
perancangan, mulai dari ERD hingga
endpoint API, telah dipaparkan secara
lengkap dalam makalah ini.

2. Komponen-komponen apa saja yang
diperlukan? Komponen-komponen
esensial tersebut meliputi: (a) Skema
basis data relasional yang
ternormalisasi ~ untuk memastikan
integritas data, (b) Kumpulan endpoint
RESTful API yang mengatur operasi
CRUD, (c) Lapisan logika bisnis
(controller) yang memproses validasi
dan aturan, (d) antarmuka pengguna
(front-end) yang responsif dan
komunikatif, serta (¢) Laporan audit
untuk pelacakan aktivitas.

3. Bagaimana cara melakukan
penerapan? Proses deployment telah
didemonstrasikan pada lingkungan
server lokal Ubuntu, meliputi instalasi
dependensi, konfigurasi variabel
lingkungan, dan manajemen proses
aplikasi, yang berfungsi sebagai
panduan praktis bagi pemula.

4.Betapa efektifnya prototipe yang
dihasilkan? Prototipe ini terbukti jauh
lebih efektif daripada metode manual
dengan secara signifikan mengurangi
kesalahan input data melalui validasi,

menghilangkan redundansi ~ data
melalui normalisasi data dasar,
meningkatkan ~ keamanan melalui
kontrol akses ringkas, dan

mempercepat akses informasi melalui

antarmuka sepertinya yang responsif.
Kontribusi utama dari penelitian ini adalah dua
kali lipat. Pertama, secara praktis, dihasilkan
sebuah prototipe fungsional yang dapat
langsung diadopsi atau dikembangkan lebih
lanjut oleh instansi kecil. Kedua, secara teoretis
dan edukatif, disajikan sebuah dokumentasi
end-to-end yang lengkap dan terstruktur, mulai
dari analisis kebutuhan hingga penerapan, yang
dapat dijadikan bahan ajar atau referensi utama
bagi pelajar dan praktisi pemula yang ingin
mempelajari fondasi pengembangan sistem
informasi berbasis server. [15].
Meskipun demikian, penelitian ini membuka
pintu bagi pengembangan lebih lanjut di bidang
keamanan siber, optimasi kinerja, dan
pemanfaatan infrastruktur awan. Dengan
landasan yang telah dibangun, penelitian
selanjutnya dapat fokus pada aspek-aspek
lanjutan tersebut untuk menciptakan sistem
yang tidak hanya sederhana, tetapi juga tangguh

dan siap menghadapi tantangan skala
perusahaan.

berkelanjutan.

UCAPAN TERIMA KASIH

Penulis menyampaikan terima kasih kepada
semua pihak yang telah memberikan dukungan
dalam proses penyusunan penelitian ini, baik
berupa bantuan pemikiran, arahan, motivasi,
maupun fasilitas yang diberikan. Ucapan terima
kasih juga disampaikan kepada dosen
pembimbing yang telah memberikan panduan
serta masukan yang sangat berarti, rekan-rekan
yang turut membantu dalam pengumpulan
referensi, serta lingkungan akademik yang
menyediakan suasana kondusif untuk belajar
dan meneliti. Seluruh kontribusi tersebut sangat
membantu penulis dalam menyelesaikan
penelitian ini dengan baik.

DAFTAR PUSTAKA

[1] D. Wijaya dan L. Fajar, "Implementasi REST
API untuk integrasi sistem informasi berbasis
web," Jurnal Teknologi dan Sistem Informasi ,
vol. 7, tidak. 1, hlm. 22-30, 2021.

[2] B. Santoso dan R. Sari, "Optimasi manajemen
basis data menggunakan model server

singkatnya," Jurnal Informasi dan Komputasi
, vol. 9, tidak. 3, hlm.144-153, 2022.

JITET (Jurnal Informatika dan Teknik Elektro Terapan) pISSN: 2303-0577 eISSN: 2830-7062 Agil dkk

[3] H. Kim dan S. Lee, "Virtualisasi ringan untuk
penyebaran server skala kecil," IEEE Access ,
vol. 9, hlm. 55123-55134, 2021.

[4] B. Oetomo, "Konsep dasar sistem informasi
dalam pengelolaan data modern," Jurnal
Sistem Informasi , vol. 14, tidak. 2, hal.55-63,
2018.

[5] D. Wijaya dan L. Fajar, "Perancangan server
aplikasi untuk pengelolaan logika bisnis web,"
Jurnal Teknologi dan Sistem Informasi , vol. 7,
tidak. 1, hlm. 22-30, 2021.

[6] A. Rahman dan Y. Pratama, "Implementasi
arsitektur three-tier pada sistem informasi
terintegrasi," Jurnal Rekayasa Teknologi
Informasi , vol. 5, tidak. 2, hal.101-109, 2020.

[7] B. Santoso dan R. Sari, "Penerapan model CRUD
dalam pengembangan aplikasi berbasis web,"
Jurnal Informasi dan Komputasi , vol. 9, tidak.
3, hlm.144-153, 2022.

[8] DM Kroenke dan DJ Auer, Pemrosesan Basis
Data: Dasar-dasar, Desain, dan Implementasi
, edisi ke-14. Pearson, 2019.

[9] AS Tanenbaum dan M. Van Steen, Sistem
Terdistribusi: Prinsip dan Paradigma , edisi
ke-3. Prentice Hall, 2016.

[10] W. Stallings, Sistem Operasi: Internal dan
Prinsip Desain , edisi ke-9. Pearson, 2018.

[11] RS Pressman, Rekayasa Perangkat Lunak:
Pendekatan Praktisi . McGraw-Hill, 2014.

[12] L. Bass, P. Clements, dan R. Kazman,
Arsitektur Perangkat Lunak dalam Praktik
edisi ke-3. Addison-Wesley, 2013.

[13]J. Heizer dan B. Render, Manajemen Operasi ,
edisi ke-11. Pearson, 2017.

[14] D. Oaks dan J. Smith, "Desain server yang
efisien untuk aplikasi pemrosesan data ringan,"
Jurnal Internasional Aplikasi Komputer , vol.
182, no. 35, hlm. 1-10, 2019.

[15] A. Rahman dan F. Yuliani, "Model server
aplikasi terpusat untuk meningkatkan efisiensi
manajemen data," Jurnal Penelitian Sistem
Informasi , vol. 12, no. 2, him. 5564, 2020.

836

