Vol. 13 No. 1, pISSN: 2303-0577 eISSN: 2830-7062

http://dx.doi.org/10.23960/jitet.v13i1.5619

SISTEM PENDETEKSI KEKOSONGAN AIR DI KANDANG AYAM MENGGUNAKAN INTERNET OF THINGS (IOT)

Arif Maruf^{1*}, Wina Witanti², Edvin Ramadhan³

¹²³Program Studi Teknik Informatika, FSI Universitas Jenderal Achmad Yani, Cimahi, Indonesia,

Received: 5 Desember 2024 Accepted: 14 Januari 2025 Published: 20 Januari 2025

Keywords:

Sistem Sensor Ultrasonic Kandang Ayam Internet Of Things

Corespondent Email: arifmaruf56@gmail.com,

Abstrak. Sistem pendeteksi kekosongan air minum di kandang ayam yang berbasis Internet of Things (IoT) berkonsentrasi pada pengawasan suplai air minum unggas peternakan yang efektif secara real time. Kesehatan dan produktivitas ayam sangat bergantung pada ketersediaan air minum yang memadai. sebuah inovasi untuk mempermudah peternak dalam memantau level air di kandang ayam. Sistem ini terdiri dari sensor ultrasonik yang digunakan untuk mendeteksi level air, mikrokontroler untuk mengirimkan data ke server cloud, server cloud untuk menyimpan data yang dikirimkan ke peternak jika level air telah mencapai batas minimum. Dengan menggunakan sistem ini, peternak dapat memantau secara real time level air di kandang ayam dan dapat segera mengambil tindakan jika level air sudah mencapai batas minimum yang ditentukan. sebagai teknologi utama untuk pemantauan otomatis dan komunikasi data secara real time. IoT memungkinkan perangkat sensor untuk mendeteksi level air secara terus-menerus dan mengirimkan informasi ke platform pemantauan yang dapat diakses peternak. Ketika level air turun di bawah ambang batas tertentu, sehingga peternak dapat melakukan tindakan pengisian ulang dengan cepat. Dengan peran ini, IoT membantu mengotomatisasi proses pemantauan, meningkatkan efisiensi operasional. Hasil pengujian menunjukkan bahwa sistem deteksi IoT dapat mendeteksi kekosongan tabung air ayam dengan akurasi yang cukup tinggi. Penggunaan teknologi IoT dalam pertanian unggas.

Abstract. The Internet of Things (IoT) based water detector system in chicken coops focuses on effective real-time monitoring of poultry drinking water supply. Chicken health and productivity are highly dependent on the availability of adequate drinking water. an innovation to make it easier for farmers to monitor water levels in chicken coops. This system consists of an ultrasonic sensor used to detect water levels, a microcontroller to send data to a cloud server, a cloud server to store data sent to farmers if the water level has reached the minimum limit. By using this system, farmers can monitor the water level in chicken coops in real time and can immediately take action if the water level has reached the specified minimum limit. as the main technology for automatic monitoring and real-time data communication. IoT allows sensor devices to continuously detect water levels and send information to a monitoring platform that farmers can access. When the water level drops below a certain threshold, farmers can quickly refill. With this role, IoT helps automate the monitoring process, improving operational efficiency. Test results show that the IoT detection system can detect empty chicken water tanks with fairly high accuracy. The use of IoT technology in poultry farming.

1. PENDAHULUAN

Pada saat ini, pertanian unggas menjadi salah satu sektor penting dalam industri peternakan di seluruh dunia. Hal ini disebabkan karena permintaan konsumen terhadap produk unggas yang semakin meningkat. Namun, dalam

operasionalnya, peternakan unggas masih mengalami beberapa masalah, salah satunya adalah ketersediaan air yang kurang memadai. Ketersediaan air minum yang cukup dan terjamin merupakan salah satu faktor penting dalam menjaga kesehatan dan produktivitas ayam. Jika ketersediaan air tidak teriaga. dehidrasi pada ayam menvebabkan yang berdampak buruk pada pertumbuhan dan produksi telur. Selain itu, masalah kekosongan air minum pada kandang ayam juga dapat menyebabkan ayam menjadi stres dan mudah terserang penyakit. Oleh karena itu, deteksi kekosongan air minum secara tepat waktu sangatlah penting agar tindakan yang tepat dapat diambil secepat mungkin untuk menjaga kesehatan ayam.[1]

Dengan sistem pendeteksi kekosongan air minum di kandang ayam menggunakan IoT, peternak ayam dapat memantau ketersediaan air secara real time dan memperoleh informasi mengenai kondisi air di dalam tabung air. Hal ini memungkinkan peternak ayam untuk mengambil tindakan yang tepat dan segera mengisi kembali air di dalam tabung sebelum air benar-benar habis. Oleh karena itu, diperlukan sebuah sistem deteksi untuk mendeteksi kekosongan tabung air ayam secara otomatis dan memberikan notifikasi kepada peternak jika tabung air kosong. Beralih ke pemberian air otomatis mengurangi waktu yang dihabiskan untuk membersihkan tempat minum ayam, yang dapat digunakan untuk aktivitas lain yang lebih produktif. Selain itu, alat ini juga akan meminimalisir energi yang dikonsumsi pekerja bahkan meminimalisir jumlah pekerja sehingga membuat perusahaan lebih untung karena biaya tenaga kerja juga akan berkurang.[2]

Pada kandang ayam menggunakan IoT dengan sensor ultrasonik dan memberikan pembritahuan merupakan sebuah inovasi untuk mempermudah peternak dalam memantau level air di kandang ayam. Sistem ini terdiri dari sensor ultrasonik yang digunakan untuk mendeteksi level air, mikrokontroler untuk mengirimkan data lewat grafik, server cloud untuk menyimpan data dan pemberitahuan yang dikirimkan ke peternak jika level air telah mencapai batas minimum. Dengan menggunakan sistem ini, peternak dapat memantau secara real time level air di kandang ayam dan dapat segera mengambil tindakan jika level air sudah mencapai batas minimum yang ditentukan.[3]

Dalam beberapa tahun terakhir, teknologi Internet of Things (IoT) telah berkembang pesat dan memberikan solusi untuk mengatasi berbagai masalah di berbagai bidang, terbukti dapat meningkatkan efisiensi dan produktivitas, serta mengurangi biaya operasional.[4]

2. TINJAUAN PUSTAKA 2.1 Internet of Things (IoT)

Internet of Things (IoT) merupakan sebuah konsep dasar yang diarahkan pada kemampuan memanfaatkan teknologi dengan cara terhubung ke jaringan Internet. IoT yang dikembangkan harus dapat diimplementasikan sebagai alat yang terintegrasi dengan perangkat fisik seperti sensor ultrasonik. dan mikrokontroler. Jadi dari segi penggunaannya membantu manusia berinteraksi langsung dengan perangkat melalui protokol IoT atau perangkat jaringan yang dapat mengirim data secara real time dan melakukan percakapan jarak jauh.[5]

Konsep "Internet of Things", juga dikenal sebagai "Internet of Things", mengklaim bahwa semua benda di dunia nyata memiliki kemampuan untuk berkomunikasi satu sama lain melalui penggunaan jaringan internet, yang merupakan komponen dari sistem terpadu. Perangkat Internet of Things pada dasarnya terdiri dari sensor sebagai pengumpul data, sambungan internet sebagai media komunikasi, dan server sebagai pengumpul informasi yang diterima sensor dan dianalisa. Misalnya, kamera CCTV yang dipasang di sepanjang jalan dapat dihubungkan ke rung kontrol yang jaraknya mungkin puluhan kilometer.[6] Rumah cerdas juga dapat dikontrol melalui smartphone melalui koneksi internet. Kevin Ashton pertama kali muncul dengan gagasan Internet of Things pada tahun 1999 dalam salah satu presentasinya. Banyak perusahaan besar, seperti Intel, Microsoft, dan Oracle, kini mulai berinvestasi dalam Internet of Things. Karena banyaknya potensi yang ditawarkan Internet of Things[4], banyak yang memperkirakan bahwa itu akan menjadi "the next big thing" dalam teknologi informasi. Contoh sederhana dari manfaat dan penerapan Internet of Things adalah kulkas yang dapat memberi tahu penggunanya melalui SMS atau email tentang makanan dan minuman apa saja yang sudah habis dan harus disimpan di pendingin.[7]

2.1 Cara Kerja Internet Of Things

 $\begin{array}{cccc} Cara & kerja & Internet & of & Things & (IoT) \\ melibatkan & beberapa & tahap & yang & saling & berkaitan, \end{array}$

yaitu perangkat untuk pengumpulan data, konektivitas, platform IoT, analisis data, antarmuka pengguna, dan automasi. IoT memberikan solusi yang efektif dan efisien di berbagai bidang dengan memberikan wawasan yang cepat dan otomatisasi tindakan. Setiap tahap dalam IoT memiliki peranan penting untuk memastikan data yang diterima akurat dan dapat digunakan oleh pengguna dengan optimal.[8]

Internet of Things bekerja dengan menggunakan argumentasi pemrograman, yang memungkinkan sesama mesin terhubung secara otomatis tanpa campur tangan manusia dan di mana pun. Kedua interaksi mesin tersebut terhubung melalui internet, sementara manusia hanya berfungsi sebagai pengatur dan pengawas alat tersebut bekerja secara langsung.[9]

2.2 Pengertian Peternakan

Peternakan mengacu pada kegiatan beternak dan beternak serta memperoleh manfaat dari hasil kegiatan tersebut. Kegiatan peternakan meliputi penyediaan makanan, reproduksi untuk mencari sifat-sifat unggul, pemeliharaan, pemeliharaan kesehatan dan pemanfaatan hasilnya. Peternakan dapat dibedakan menjadi peternakan ekstensif atau intensif, dan ada juga peternakan semi intensif yang menggabungkan keduanya.[10] Dalam pertanian ekstensif, hewan dibiarkan berkeliaran dan mencari makanan sendiri, terkadang di lahan yang luas dan terkadang di bawah pengawasan untuk mencegah pemangsaan. Dalam pertanian intensif, terutama pabrik pertanian yang umum di negara maju, hewan dipelihara di bangunan dengan kepadatan tinggi, dimasukkan dari luar, makanan kehidupan terorganisir, dan efisiensi produksi tinggi.[11]

2.3 Arduino R4

Arduino UNO R4 Minima merupakan board UNO pertama yang menggunakan mikrokontroler 32-bit. Papan ini dilengkapi mikrokontroler seri Renesas RA4M1 (R7FA4M1AB3CFM#AA0), yang berisi mikroprosesor Arm® Cortex®-M4 48 MHz. UNO R4 memiliki memori lebih besar dari sebelumnya, termasuk Flash 256 kB, SRAM 32 kB, dan memori data (EEPROM) 8 kB. Papan Minima Arduino UNO R4 beroperasi pada tegangan 5 V, sehingga kompatibel dengan perangkat keras aksesori format UNO dengan tegangan operasi yang sama. Oleh karena itu, perisai yang dirancang untuk versi UNO sebelumnya dapat digunakan dengan aman dengan papan ini. Namun, karena perubahan pada mikrokontroler, kompatibilitas perangkat lunak tidak dapat dijamin.[12]

2.4 Ultrasonic ranging module HCSR04

Sensor ultrasonik HCSR04 merupakan alat yang digunakan untuk mengukur jarak suatu benda. Kisaran jarak terukur kurang lebih 2-450 cm. Perangkat ini menggunakan dua pin digital untuk mengirimkan jarak baca. Sensor ultrasonik bekerja dengan mengirimkan pulsa ultrasonik kurang lebih 40 KHz,kemudian memantulkan kembali pulsa gema tersebut dan menghitung waktu yang dibutuhkan dalam satuan mikrodetik, Kita dapat memicu pulsa secepat 20 detik.1 kali per detik dan dapat secara akurat menemukan lokasi objek yang berjarak 3 meter.[13]

2.5 Relay

Relay adalah saklar yang dioperasikan secara elektrik, komponen elektromekanis yang terdiri dari dua bagian utama: elektromagnet (kumparan) dan saklar mekanis. Relai menggunakan prinsip elektromagnetik untuk menggerakkan sakelar bertegangan rendah, untuk menghantarkan listrik bertegangan tinggi. Misalnya saja dengan menggunakan relay 5V dan 50ma dapat menggerakkan armature relay sebagai saklar, memberikan daya 220V 2A.[14]

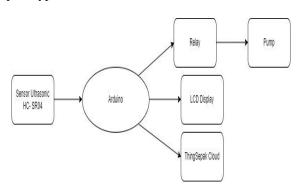
2.6 Pengertian Arduino IDE

singkatan IDE adalah dari Integrated Development Environment, yang merupakan lingkungan terintegrasi untuk pembangunan. Disebut lingkungan karena melalui perangkat lunak ini, Arduino diprogram untuk menjalankan fungsifungsi yang tertanam dalam sintaks pemrograman. Arduino menggunakan Bahasa pemrogramannya sendiri, mirip dengan C. Arduino diciptakan untuk pemula, bahkan mereka yang tidak memiliki dasar bahasa pemrograman sama sekali, karena menggunakan C++ dan Java. Software Arduino dapat diinstal pada berbagai sistem (OS) seperti: Linux, Mac OS, Windows. Arduino lebih dari sekedar alat pengembangan, namun kombinasi kompleks perangkat keras, bahasa pemrograman, dan lingkungan pengembangan terintegrasi (IDE).[15]

2.7 Pengertian ThingSpeak

ThingSpeak adalah platform Internet of Things (IoT) yang memungkinkan Anda mengumpulkan, menganalisis, dan memvisualisasikan data dari berbagai sensor atau perangkat. Platform ini menyediakan antarmuka berbasis web tempat. Anda dapat menyimpan dan mengambil data dari perangkat IoT, serta membuat aplikasi yang menggunakan data yang dikumpulkan. Thingspeak adalah platform yang memungkinkan cloud sistem Internet of Things (IoT). Platform Thingspeak dapat diakses secara gratis dan dilengkapi dengan berbagai fasilitas yang tersedia. Namun jika ingin

mengembangkan proyek IoT Anda ke arah yang lebih kompleks, Anda dapat memperbaruinya untuk hasil yang maksimal.[16]

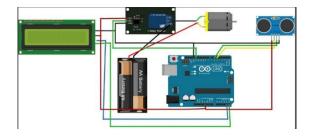

3. METODE PENELITIAN

3.1 Pengambilan Data

Pada tahap ini dilakukan proses pengambilan data, dimana data yang diambil adalah dari koneksi internet dan data dari sensor-sensor tersebut sering kali dikirim melalui koneksi internet ke perangkat komputer atau server pusat. Ini memungkinkan pengolahan dan analisis data secara *real time* serta pemantauan jarak jauh. data historis sistem juga dapat menyimpan data historis yang mencatat perilaku dan kondisi kandang ayam selama beberapa waktu. Data ini bisa digunakan sebagai referensi untuk pembandingan dan analisis lebih lanjut.

3.2 Diagram Blok Sistem

Diagram blok merupakan salah satu bagian terpenting dalam perancangan, karena dari diagram blok dapat diketahui prinsip kerja keseluruhan rangkaian. Pada Gambar 1 merupakan diagram blok prototype.



Gambar 3. 1 Blok Diagram

Terdapat beberapa jenis sensor yang dapat digunakan dalam suatu rancangan atau diagram blok arsitektur, salah satunya adalah sensor ultrasonik. Sensor tekanan dapat mengukur ketinggian air dengan cara mengukur tekanan air pada dasar suatu wadah. Sensor ultrasonik menggunakan gelombang suara untuk mengukur jarak antara sensor dan permukaan air. Sensor dan sistem pemantauan perlu berkomunikasi dengan pengguna atau sistem kontrol. Hal ini dapat dilakukan melalui berbagai metode, termasuk sambungan kabel, Wi-Fi, LCD, dan jaringan seluler, dan data yang ditangkap oleh sistem pendeteksi ketinggian air sering kali perlu diproses untuk memberikan informasi yang berarti. Hal ini mungkin melibatkan perhitungan untuk mengubah pembacaan sensor menjadi ketinggian air yang akurat, koreksi terhadap perubahan tekanan atau perbandingan dengan tingkat referensi tertentu.

3.3 Peracangan Alat/ Hardware

Pada rangakian alat air minum ini dijelaskan dengan pin-pin yang digunakan dan fungsi pada pin-5 digunakan untuk ultrasonik Triger 1 yang merupakankeluaran sinyal trigger dari sensornya. Pin -6 digunakan untuk ultrasonik Echo 1 dan IN relay 1 yaitu untuk Echo Gelombang ultrasonik bertindak sebagai penangkap sinyal dipantulkan dari objek dan sebagai relay Sinyal masukan ke terminal kontrol. GND dan VCC 5V digunakan sebagai sumber tegangan ultrasonik 1 dan relay 1. Sensor ultrasonik mengirim gelombang ultrasonik dan mendeteksi waktu yang dibutuhkan untuk pantulan gelombang. Dari sini, dapat dihitung jarak atau tinggi air. Arduino Uno membandingkan tinggi air dengan batas kekosongan yang telah ditentukan. Misalnya, jika tinggi air di bawah 10 cm, dianggap sebagai kekosongan. Jika terhubung ke internet, Arduino Uno dapat mengirimkan notifikasi atau memonitor kondisi melalui modul WiFi

Gambar 3. 2 Perancagan HardWare

4. HASIL DAN PEMBAHASAN

4.1 Pengolahan Data

Data dikumpulkan secara *real time* melalui sensor ultrasonik. sensor pemantauan arduino iot. Tahapan ini dilakukan dengan membandingkan ketinggian air pada sensor pendeteksi ultrasonik pada tangki air menggunakan sencimeter untuk mendapatkan nilai ketinggian air yang akurat. Tinggi total tangki air adalah panjang 10 cm dan panjang sensor 2 cm. Pada variabel tersebut, tentukan jarak saat air dalam tangki kosong adalah 8cm, dan jarak saat air penuh adalah 2cm.

Tabel 4. 1 Pengujian Ketinggian

No	Pengukuran	Ketinggian	Hasil
	Sensor	(Cm)	
1	8	2	Sesuai
2	7	3	Sesuai
3	6	4	Sesuai
4	5	5	Sesuai
5	4	6	Sesuai
6	3	7	Sesuai
7	2	8	Sesuai

Pada tahap ini untuk mengetahui apakah berhasil Saat ketinggian air berada di dasar, jaraknya 8cm dari sensor ultrasonik Tutup tangki air. Selama proses ini, layar LCD menampilkan pesan "Air Minum Penuh". Ulangi" lalu bel berbunyi. Proses pengisian memakan waktu 25 detik.

Tabel 4. 2 Membaca Ketinggian

Pada tahap ini memerlukan waktu 8 detik untuk mengisi air dari tangki penyimpanan ke

and the property of the proper				
No	Percobaan	Informasi	Durasi	
		Lcd	Pengisian	
1	1	Terbaca	25 detik	
2	2	Terbaca	25 detik	
3	3	Terbaca	25 detik	
4	4	Terbaca	25 detik	
5	5	Terbaca	25 detik	

tangki air Tempat minum ayam. Informasi yang diperoleh dari LCD selama proses ini

Tabel 4. 3 Mengisi Tabung Ke Air

4.2 Implementasi Alat/Hadware Hasil perancangan alat atau hardware yang

No	Percobaan	Informasi	Hasil
		Lcd	
1	1	Terbaca	Penuh
2	2	Terbaca	Penuh
3	3	Terbaca	Penuh
4	4	Terbaca	Penuh
5	5	Terbaca	Penuh

diimplementasikan, wadah ini berfungsi sebagai tangki utama untuk menampung air atau cairan yang akan diolah atau diukur. Terlihat pompa kecil yang berfungsi untuk mengalirkan air dari tangki utama ke sistem lain melalui selang transparan. Terdapat dua sensor ultrasonik pada dua gelas putih. Sensor ini biasanya digunakan untuk mengukur tingkat ketinggian air atau cairan di dalam wadah. Papan rangkaian terdiri dari berbagai modul di bagian atas. Modul relay berfungsi untuk mengontrol perangkat berdaya tinggi seperti pompa, dan modul daya dan baterai menyediakan daya untuk keseluruhan sistem. Mikrokontroler Arduino berfungsi sebagai otak sensor dan mengendalikannya. Dua gelas putih ini mungkin berfungsi sebagai wadah tambahan untuk menampung cairan sementara, dilengkapi dengan pipa keluar untuk mengalirkan cairan Selain menghubungkan pompa, modul, dan sensor ke mikrokontroler melalui kabel, cairan dari pompa didistribusikan melalui selang transparan.

Gambar 4. 1 Implementasi Alat/Hardware

4.3 Halaman Menu Grafik

Grafik ini menunjukkan perubahan jarak dalam cm yang direkam oleh Sensor 1 selama periode waktu tertentu. Platform ThingSpeak dimaksudkan untuk melacak dan menampilkan data IoT secara real-time. Jarak awal sekitar 10 cm menunjukkan bahwa permukaan air jauh dari sensor, menunjukkan bahwa level air relatif rendah. Seiring berjalannya waktu, jarak semakin berkurang, menunjukkan bahwa permukaan air semakin mendekati sensor. Penurunan jarak ini merupakan bukti langsung dari naiknya tingkat air. Gambar menunjukkan bahwa sistem sensor ultrasonik dapat memantau perubahan level air dengan baik. Ketika jarak lebih dari 5 cm, air belum penuh dan masih ada ruang di dalam wadah; ketika jarak kurang dari 5 cm, air mendekati penuh; dan ketika jarak kurang dari 0 cm, air telah mencapai kapasitas maksimumnya (wadah penuh).

Gambar 4. 2 Implementasi Sensor 1

Fungsi ini pemantauan grafik, melihat grafik ketinggian air rata-rata secara real time, dan maka kalau grafik naik tanda bahwa isi air telah penuh, jika air grafik kebawah maka tanda air di dalam tabung maka kosong. Grafik ini menunjukkan jarak (cm) yang diukur oleh Sensor 2 dalam wadah atau tangka, rentang waktu pengambilan data, dan jarak antara sensor dan permukaan air. Semakin kecil jarak, semakin tinggi level air. Grafik dimulai dengan jarak sekitar lima puluh sentimeter, yang menunjukkan bahwa

permukaan air jauh dari sensor, yang menunjukkan bahwa level air cukup rendah. Jarak secara bertahap menurun dari lima puluh sentimeter hingga hampir menjadi ceroboh. Penurunan ini. Ketika jarak lebih dari 10 cm, air dalam wadah belum penuh, sedangkan ruang kosong masih ada. Ketika jarak kurang dari 10 cm, air hampir penuh, dan pengisian harus dihentikan untuk mencegah air meluap. Ketika jarak mencapai 0 cm, grafik ini dapat digunakan dalam sistem otomatis untuk menghentikan pengisian air. Sensor 2 menunjukkan proses pengisian air secara bertahap dari 50 cm ke hampir 0 cm. Grafik ini menunjukkan bahwa sistem deteksi memantau kenaikan level air dengan baik, yang penting untuk mengatur dan mengontrol pengisian air secara otomatis.

Gambar 4. 3 Implementasi Sensor 2

5. KESIMPULAN

Penelitian ini menghasilkan sebuah sistem yang dapat mendeteksi ketersedian air minum bagi ayam dengan menggunakan iot, sensor yang di gunakan untuk mendeteksi kekosongan air adalah ultrasonic, kemudian diolah oleh Arduino sehingga secara otomatis dapat mengisi kekurang air pada tabung.

Dari hasil pengujian melakukan perbandingan pengukuran sensor pada beberapa ketinggian air, yang dimana hasil tersebut dapat peroleh dengan sesuai. sistem ini diharapkan dapat meningkatkan efisiensi pengelolaan pasokan air dengan menyediakan pemantauan ketinggian air minum secara Dengan mengirimkan real time. pemberitahuan secara otomatis ketika air mulai menipis atau habis, peternak dapat bereaksi cepat untuk mencegah kekurangan air. Secara keseluruhan, penelitian ini bertujuan membantu petani meningkatkan produktivitas dan mengelola sumber daya secara lebih efisien dengan menerapkan teknologi terkini.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada pihak-pihak terkait yang telah memberi dukungan terhadap penelitian ini.

DAFTAR PUSTAKA

- [1] f. aryunita, n. rasjid, and m. f. mansyur, "rancang bangun sistem monitoring keamanan kandang ayam bloiler menggunakan esp32-cam berbasis iot dengan aplikasi android," *j. inform. dan tek. elektro terap.*, vol. 12, no. 1, 2024, doi: 10.23960/jitet.v12i1.3699.
- [2] y. w. hutama and c. bella, "sistem otomatis pemberian air minum pada ayam broiler memakai mikrokontroller arduino dan rtc ds1302," 2021. [online]. available: http://jurnal.teknokrat.ac.id/index.php/aej
- [3] a. tri wahyudi, y. wahyu hutama, m. bakri, s. dadi rizkiono, and p. studi teknik komputer, "sistem otomatis pemberian air minum pada ayam pedaging menggunakan mikrokontroller arduino dan rtc ds1302," 2020.
- [4] o. pemberian air dan keamanan kandang pada ternak ayam petelur dengan komunikasi lora, r. angriawan, and n. anugraha, "automation of drinking water and security coop of layer hens using lora communication," 2021.
- [5] a. rofii, s. gunawan, and a. mustaqim, "rancang bangun sistem pengaman pintu gudang berbasis internet o things (iot) dan sensor fingerprint," *j. kaji. tek. elektro*, vol. 6, no. 2, pp. 70–76, 2022, doi: 10.52447/jkte.v6i2.5735.
- [6] r. e. budiani, j. d. irawan, and d. rudhistiar, "sistem monitoring penyiraman otomatis pada tanaman cabai berbasis internet of things (iot)," pros. semin. nas. rekayasa keteknikan inform., vol. 8, no. senarai, p. 140, 2023.
- [7] i. afriliana, a. basit, a. rakhman, and m. t. prihandoyo, "peningkatan iptek pada siswa sekolah menengah atas melalui pengenalan internet of things," *jmm (jurnal masy. mandiri)*, vol. 8, no. 1, p. 608, 2024, doi: 10.31764/jmm.v8i1.20110.
- [8] c. skad and r. nandika, "perancangan alat pakan ikan berbasis internet of thing (iot)," *sigma tek.*, vol. 3, no. 2, pp. 121–131, 2020, doi: 10.33373/sigma.v3i2.2744.
- [9] n. hidayanti and d. titisari, "low cost monitoring kesehatan berbasis internet of thing," *j. teknokes*, vol. 13, no. 2, pp. 98–106, 2020, doi: 10.35882/teknokes.v13i2.6.
- [10] e. nurhidayah, "pelaksanaan bagi hasil peternakan sapi perah di desa nyawangan kecamatan sendang prespektif ekonomi islam," *j. eksyar j. ekon. syariah*, vol. 07, no. 02, pp. 98–108, 2020, [online]. available:

- http://ejournal.staimtulungagung.ac.id/index.php/eksyar
- [11] a. i. suryani and i. anggraini, "sistem informasi pengolahan data peternakan ayam merah petelur pada astipel farm berbasis web," vol. 8, no. 4, pp. 1090–1102, 2024.
- [12] a. i. hidayat, t. informatika, u. m. pare-pare, and t. cerdas, "prototipe sistem manajemen tangki pintar berbasis internet of things (iot)," vol. 5, no. 2, pp. 182–191, 2024.
- [13] m. m. gabriel, "arduino uno, ultrasonic sensor hc-sr04 motion detector with display of distance in the lcd," vol. 9, no. 05, pp. 936–942, 2020.
- [14] i. artikel and a. info, "rancang bangun sistem keamanan sepeda motor berbasis arduino uno menggunakan gps dan relay melalui," vol. 1, no. 1, pp. 1–7, 2022.
- [15] d. apriani, k. munawar, and a. setiawan, "alat monitoring pada depo air minum biru cabang nagrak kota tangerang menggunakan air galon," 2019, vol. 5, no. 1, pp. 109–117.
- [16] k. ilmiah and f. teknik, "sistem remote kontrol listrik berbasis mediacloud thingspeak ahmadani, taufik hidayat, munawir program studi teknik komputer/ universitas serambi mekkah * koresponden email:," pp. 36–43.