Vol. 12 No. 3S1, pISSN: 2303-0577 eISSN: 2830-7062

http://dx.doi.org/10.23960/jitet.v12i3S1.5321

# ANALISIS FREKUENSI GANGGUAN TERHADAP KINERJA SISTEM PROTEKSI GARDU INDUK 150 KV SIEMPAT RUBE

# M. Ridho<sup>1</sup>, Parlin Siagian<sup>2</sup>, Zuraidah Tharo<sup>3</sup>

<sup>1,2,3</sup>Universitas Pembangunan Panca Budi; Jl. Gatot Subroto No. 4, Kec. Medan Sunggal, Medan, Sumatera Utara.

Received: 7 September 2024 Accepted: 5 Oktober 2024 Published: 12 Oktober 2024

### **Keywords:**

Gardu Induk; Transformator: Sisrem Distribusi Listrik; Sistem Proteksi; Frekuensi Gangguan

## **Corespondent Email:**

mridho270700@gmail.com

**Abstrak.** Sistem Proteksi Gardu Induk merupakan sistem pengamanan yang dirancang untuk mengurangi dan membatasi kerugian yang ditimbulkan pada peralatan listrik akibat adanya gangguan. Penerapan sistem proteksi ini sangat penting untuk menjamin kelancaran penyaluran daya. Frekuensi gangguan dapat mempengaruhi efisiensi mekanisme proteksi di Gardu Induk. Gangguan dapat terjadi dengan frekuensi yang bervariasi pada transformator daya dan jaringan tegangan menengah (JTM). Penelitian difokuskan pada sistem proteksi Differential Relay (Alstom) dan Over Current Relay (Alstom) pada area transformator daya, serta sistem proteksi Over Current Relay (Alstom) pada jaringan tegangan menengah. Hasil penelitian menunjukkan bahwa grafik frekuensi gangguan yang berdampak pada sistem proteksi area transformator daya 2 di Gardu Induk 150 KV Siempat Rube terdiri dari gangguan teknis, gangguan non teknis, dan gangguan yang tidak diketahui penyebabnya. Sistem proteksi area transformator daya 2 Gardu Induk 150 KV Siempat Rube mempunyai persentase keandalan relai sebesar 100% yang menunjukkan sistem bekerja secara maksimal.

**Abstract**: The Substation Protection System is a security system designed to mitigate and restrict the harm caused to electrical equipment as a result of disruptions. The implementation of this protective system is crucial for ensuring the uninterrupted transmission of power. The frequency of disruptions may impact the efficiency of the protection mechanism at the Substation. Disturbances may manifest with varying frequency in power transformers and medium voltage networks (JTM). The investigation focused on the Differential Relay (Alstom) and Over Current Relay (Alstom) protection systems in the power transformer area, as well as the Over Current Relay (Alstom) protection system in the medium voltage network. The study's findings revealed that the frequency graph of disruptions impacting the protection system of power transformer area 2 at the 150 KV Siempat Rube Substation consisted of technical disruptions, non-technical disruptions, and disruptions of unidentified origin. The power transformer area 2 protection system of the 150 KV Siempat Rube Substation has a relay reliability percentage of 100%, indicating that it performs at its maximum capacity.

### 1. PENDAHULUAN

Gardu Induk 150 KV Siempat Rube milik PT PLN (Persero) berfungsi sebagai pusat kebutuhan pengelolaan beban listrik. pengamanan peralatan sistem kelistrikan, dan penanganan proses normalisasi gangguan di Pakpak Bharat. wilayah Tenaga listrik dikonversi oleh dua buah transformator daya vang ditenagai oleh empat menara. Transformator daya tersebut dihubungkan ke Saluran Udara Tegangan Tinggi (SUTT) 150 KV menggunakan sistem busbar ganda. Gardu induk 150 kV berfungsi untuk mengatur dan mendistribusikan tenaga listrik pada tegangan tinggi dalam jaringan transmisi. Teknologi thermovisi dapat digunakan untuk memantau suhu peralatan dan mengidentifikasi titik panas yang mungkin menunjukkan adanya masalah, sehingga membantu dalam pemeliharaan preventif dan menjaga keandalan system [1]. Gangguan pada sistem distribusi listrik dapat terjadi karena berbagai faktor, seperti hubung singkat, kerusakan isolasi, atau faktor eksternal seperti kondisi cuaca. Deteksi dan estimasi lokasi gangguan yang akurat diperlukan untuk meminimalkan dampak gangguan memastikan pemulihan cepat dalam sistem distribusi [2]. Gangguan pada sistem distribusi listrik, terutama yang disebabkan oleh sumber daya alam, merupakan kejadian yang umum. Gangguan ini meliputi kabel konduktor yang retak, kerusakan pembangkit listrik, gangguan saluran transmisi yang disebabkan oleh petir, dan gangguan hubung singkat. Mengingat potensi gangguan yang tidak terduga, sangat penting untuk memiliki peralatan keselamatan yang efisien dan dapat diandalkan. Sistem keselamatan ini dirancang khusus untuk mengurangi potensi bahaya pada peralatan gardu induk, yang dapat menyebabkan terputusnya distribusi energi ke pengguna akhir. Lebih jauh, sistem proteksi yang efektif berfungsi untuk mengurangi dampak gangguan, menjaga stabilitas operasional, dan menjamin pasokan energi yang tidak terputus untuk memenuhi permintaan pelanggan secara memadai.

Transformator daya dianalisis sebagai komponen vital dalam sistem tenaga listrik yang berfungsi untuk mengubah tegangan dari level tinggi ke level yang lebih rendah [3]. Trafo daya merupakan komponen penting dalam gardu induk karena berperan penting dalam penyaluran daya listrik kepada pengguna pada berbagai level tegangan, termasuk tegangan tinggi, sedang, dan rendah. Untuk menjaga trafo daya dari kerusakan, relai proteksi telah diterapkan. Relai ini mampu mengidentifikasi keadaan abnormal dalam sistem tenaga listrik dan mengambil tindakan yang tepat untuk menjamin isolasi gangguan, sekaligus meminimalkan potensi gangguan pada operasi reguler. Metode yang digunakan untuk mengatasi gangguan ini termasuk melakukan inspeksi, melakukan perhitungan, dan melakukan analisis untuk memastikan pengaturan relai yang tepat. Hal ini memastikan bahwa sistem proteksi berfungsi secara efektif tindakan pengamanan, mendorong operasi sistem tenaga listrik yang stabil.

Gangguan yang sering mempengaruhi sistem proteksi area trafo tenaga dari tahun 2007 sampai 2012 adalah gangguan nonteknis yang diketahui gangguan tidak penyebabnya, yang mengakibatkan Short Circuit Feeder (SCF) pada Saluran Kabel Tegangan Menengah (SKTM) tertimpa pohon. Sistem proteksi area trafo tenaga 1 di Gardu Induk 150 KV Jepara memiliki persentase keandalan rele sebesar 91,67%. Persentase gangguan yang mempengaruhi sistem proteksi area trafo tenaga 2 di Gardu Induk 150 KV Jepara adalah gangguan teknis sebesar 50% dan gangguan yang tidak diketahui penyebabnya sebesar 50%. Secara keseluruhan, sistem proteksi pada area trafo tenaga 1 dan 2 dari tahun 2007 sampai 2012 memiliki keandalan dengan predikat cukup baik dalam mengatasi kuantitas gangguan [4]. Dalam sistem tenaga listrik, perlindungan yang efektif dari gangguan adalah kunci untuk menjaga kestabilan dan keandalan operasional. Menurut [5], 'Analisa Setting Relay Differensial Tipe Nr 9671 Transformator Daya 60 MVA 150 KV di Gardu Induk Mabar' menunjukkan bahwa pengaturan relay yang tepat sangat penting untuk memastikan sistem proteksi berfungsi dengan baik dalam menghadapi berbagai kondisi gangguan. Penelitian ini menunjukkan bagaimana pengaturan dan evaluasi frekuensi gangguan dapat mempengaruhi kinerja sistem proteksi, yang relevan dalam konteks 'Analisis Frekuensi Gangguan Terhadap Kinerja Sistem Proteksi Gardu Induk 150 KV Siempat Rube'. Memahami pengaruh frekuensi gangguan pada sistem proteksi merupakan langkah penting untuk meningkatkan efektivitas perlindungan dan mengurangi risiko kerusakan pada peralatan kritis.

### 2. TINJAUAN PUSTAKA

Sistem proteksi di gardu induk 150 kV memainkan peran krusial dalam menjaga keandalan dan keamanan sistem tenaga listrik mendeteksi. mengisolasi, dengan memulihkan sistem dari gangguan seperti hubung singkat atau kelebihan beban. Kinerja ini sangat bergantung sistem kemampuannya untuk merespons gangguan secara cepat dan efektif. Frekuensi gangguan, yaitu seberapa sering gangguan terjadi, mempengaruhi respons sistem proteksi dan relay. Dengan pengaturan menganalisis frekuensi gangguan, kita dapat mengevaluasi efektivitas sistem proteksi dan mengidentifikasi area untuk perbaikan, memastikan bahwa sistem dapat beroperasi dengan andal dan mengurangi risiko kerusakan peralatan serta gangguan pasokan listrik. Dalam disertasinya [6] membahas analisis kinerja sistem proteksi di gardu induk 150 kV dengan fokus pada bagaimana sistem tersebut merespons frekuensi gangguan. Penelitian ini menunjukkan bahwa efektivitas sistem proteksi sangat bergantung pada kemampuannya untuk mendeteksi dan menangani gangguan secara cepat dan tepat. Dengan mengevaluasi frekuensi gangguan yang terjadi, disertasi ini memberikan wawasan tentang bagaimana sistem proteksi dapat dioptimalkan untuk meningkatkan perlindungan keandalan peralatan dan operasional gardu induk

Sistem instalasi listrik, seperti dijelaskan dalam artikel oleh [7], melibatkan perancangan dan pelaksanaan sistem kelistrikan di gedung, termasuk tata letak kabel, pemilihan peralatan, dan pemasangan komponen listrik. Fokus utama dari sistem ini adalah memastikan bahwa instalasi memenuhi kebutuhan operasional gedung, mematuhi standar keselamatan yang

berlaku, dan berfungsi secara efisien. Evaluasi sistem dilakukan untuk memastikan bahwa semua elemen terpasang dengan benar dan beroperasi dengan baik, serta untuk mengidentifikasi dan memperbaiki potensi masalah guna menjaga keandalan efektivitas sistem listrik. Dalam sistem instalasi listrik, keandalan dan keseimbangan distribusi beban pada setiap fase sangat penting untuk memastikan distribusi daya yang optimal dan mencegah terjadinya gangguan seperti hubung singkat atau kelebihan beban. Penataan instalasi tidak tepat dapat menyebabkan vang ketidakstabilan sistem proteksi dan berpotensi mempengaruhi kinerja sistem keseluruhan [8]. Pentingnya sistem proteksi di gardu induk untuk meminimalisir dampak dari gangguan yang tidak terprediksi, khususnya gangguan non-teknis yang banyak disebabkan oleh faktor eksternal seperti alam (sambaran petir, angin, pohon tumbang). Sistem proteksi berperan penting dalam menjaga stabilitas jaringan listrik dan melindungi peralatan dari kerusakan lebih lanjut. Berdasarkan penelitian ini, gangguan yang sering terjadi di gardu induk Jepara adalah gangguan non-teknis dan gangguan dengan penyebab yang tidak diketahui. Keandalan sistem proteksi diukur dengan kinerja rele proteksi. Keandalan yang baik berkisar antara 90%-99%. Untuk trafo tenaga di Gardu Induk Jepara, keandalan sistem proteksi tercatat cukup baik, yaitu sebesar 91.67%. Gangguan vang sering terjadi pada trafo melibatkan hubung singkat (Short Circuit Feeder) yang dipicu oleh pohon tumbang atau kerusakan teknis lainnya, sementara gangguan non-teknis seringkali diakibatkan oleh faktor eksternal seperti cuaca [9]. Menurut [10] frekuensi gangguan yang terjadi di Gardu Induk Bantul disebabkan oleh gangguan teknis sebesar 25%, gangguan nonteknis sebesar 25%, gangguan yang tidak diketahui penyebabnya sebesar 50%. Keandalan sistem proteksi di gardu tersebut tercatat sebesar 90.9% untuk area trafo 1 dan 92.3% untuk area trafo 2. Sistem proteksi ini dinilai memiliki keandalan yang cukup baik dalam mengatasi kuantitas gangguan yang terjadi dari tahun 2009 hingga 2013.

Relay diferensial berfungsi untuk melindungi transformator daya dengan membandingkan arus pada sisi primer dan sekunder. Jika terjadi gangguan seperti hubung singkat, perbedaan arus yang signifikan antara kedua sisi akan terdeteksi. Relav diferensial kemudian mengirimkan sinval memutuskan sirkuit yang terganggu, sehingga mengisolasi gangguan dan mencegah kerusakan lebih lanjut pada transformator serta sistem tenaga listrik secara keseluruhan. Sistem ini efektif dalam mendeteksi gangguan internal dan meminimalkan kemungkinan alarm palsu [11]. Setting relay differensial pada transformator 150 kV di gardu induk merupakan salah satu langkah kritis dalam memastikan sistem proteksi dapat bekerja dengan optimal saat terjadi gangguan, sehingga menjaga keandalan distribusi daya serta mencegah kerusakan lebih lanjut pada peralatan. Analisis kehandalan sistem penyulang jaringan 20 kV yang dibahas [12] menunjukkan pentingnya evaluasi konfigurasi sistem untuk meningkatkan kinerja dan stabilitas. Meskipun studi ini fokus pada iaringan penyulang, prinsip yang digunakan dalam analisis kehandalan dapat diterapkan untuk menilai dampak frekuensi gangguan pada sistem proteksi di gardu induk. Penggunaan perangkat lunak seperti Matlab dalam studi ini menyediakan metode yang relevan untuk memodelkan dan menganalisis kinerja sistem proteksi dalam menghadapi gangguan, yang sejalan dengan kebutuhan untuk memahami dan meningkatkan respons sistem proteksi terhadap frekuensi gangguan di gardu induk.

### 3. METODE PENELITIAN

Analisis data dilakukan di Gardu Induk 150 KV Siempat Rube untuk menentukan frekuensi gangguan dan mengevaluasi fungsi mekanisme proteksi. Studi ini akan menjelaskan metodologi pengumpulan data, alat yang digunakan untuk penelitian, dan proses pengolahan data. Pendekatan pengumpulan data yang digunakan dalam penelitian ini memanfaatkan perpaduan berbagai metodologi untuk mendapatkan data yang kaya, akurat, dan lengkap, memastikan bahwa data tersebut mematuhi persyaratan validitas dengan margin kesalahan yang kecil. Strategi pengumpulan data yang digunakan meliputi prosedur dokumentasi dan pendekatan wawancara. Pendekatan dokumentasi digunakan untuk mengumpulkan data tentang sistem proteksi yang digunakan dan gangguan yang terjadi di Gardu Induk 150 KV Siempat Rube dari tahun 2022 hingga 2023. Secara bersamaan, metode wawancara digunakan untuk mengumpulkan informasi tentang tindakan yang diambil untuk mengatasi gangguan pada sistem proteksi transformator daya di Gardu Induk 150 KV Siempat Rube. Dengan memadukan kedua pendekatan ini, para peneliti mengantisipasi tercapainya hasil yang jelas dan autentik, serta dokumentasi metodis mengenai gejala atau fenomena terkait gangguan yang memengaruhi fungsionalitas sistem proteksi transformator daya.

Tujuan dari instrumen penelitian ini adalah untuk mengumpulkan data dari Gardu Induk 150 KV Siempat Rube mengenai kejadian gangguan dan efisiensi sistem pengaman transformator daya. Instrumen yang digunakan terdiri dari dua metode, yaitu: pertama, metode dokumentasi, yang melibatkan penggunaan periksa sebagai alat mengumpulkan data yang diperoleh dari temuan penelitian tentang gangguan dan efisiensi sistem proteksi transformator di Gardu Induk 150 KV Siempat Rube. Selain itu, pendekatan wawancara menggunakan panduan wawancara untuk mengumpulkan data tentang strategi yang digunakan untuk mengatasi gangguan pada sistem proteksi transformator daya di Gardu Induk 150 KV Siempat Rube.

digunakan Metodologi vang penelitian ini adalah teknik analisis data deskriptif persentase. Pendekatan ini bertujuan untuk memberikan analisis atau wacana secara rinci terhadap hasil penelitian kuantitatif. dengan tujuan untuk memperoleh pemahaman data secara kualitatif. Proses analisis data meliputi langkah-langkah sebagai berikut: (a) menyusun pedoman wawancara untuk melakukan wawancara, (b) membuat checklist untuk mendokumentasikan informasi. mengkategorikan gangguan yang terjadi pada transformator daya di Gardu Induk 150 KV Siempat Rube selama tahun 2022 sampai dengan tahun 2023, dan (d) menentukan persentase efektivitas sistem proteksi transformator daya di Gardu Induk 150 KV Siempat Rube.

Rumus yang digunakan dalam analisis ini adalah:

Deskripsi persentase gangguan pada sistem proteksi trafo tenaga di Gardu Induk 150 KV Siempat Rube:

$$DP = \frac{n}{N} \times 100\%$$

Keterangan:

DP = Deskripsi persentase gangguan (%)

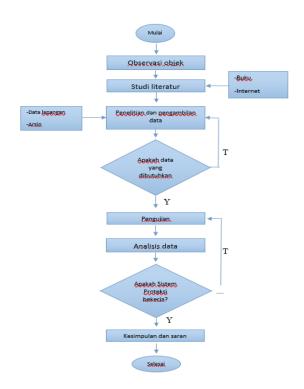
n = Frekuensi gangguan (kali)

N = Jumlah gangguan (kali)

Deskripsi persentase keandalan sistem proteksi trafo tenaga di Gardu Induk 150 KV Siempat Rube:

$$DP = \frac{n}{N} \times 100\%$$

Keterangan:


DP = Deskripsi persentase keandalan rele (%)

n = Kinerja rele (kali)

N = Jumlah seharusnya rele bekerja (kali)

Relai dianggap sangat andal jika menunjukkan persentase berkisar antara 90% hingga 100%. Laporan berikutnya akan memuat data yang dikumpulkan tentang gangguan dan efektivitas sistem proteksi transformator daya di Gardu Induk 150 KV Siempat Rube selama periode 2022 hingga 2023, yang dinyatakan dalam persentase.

### LANGKAH PENELITIAN



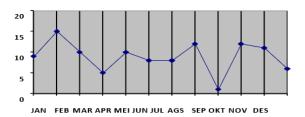
### 4. HASIL DAN PEMBAHASAN

Penelitian yang dilakukan di PT PLN (Persero) Gardu Induk 150 KV Siempat Rube menghasilkan data yang berkaitan dengan permasalahan dan tujuan penelitian. Data tersebut meliputi evaluasi kinerja sistem transformator proteksi daya dalam menanggulangi gangguan, identifikasi penyebab gangguan, dan upaya penanggulangan Data gangguan. yang diperoleh akan dipaparkan dan didiskusikan untuk mendapatkan solusi atas permasalahan yang dibahas dalam penelitian ini. Hasil pengamatan menunjukkan tiga kategori gangguan, yaitu gangguan teknis (kerusakan peralatan), gangguan non teknis (sambaran petir, angin, tertimpa pohon, dan lain-lain), dan gangguan yang tidak diketahui penyebabnya. Analisis arus gangguan hubung singkat dua fasa didasarkan pada nilai arus gangguan pendek yang dihitung pada beberapa lokasi. Hasil perhitungan menunjukkan bahwa nilai arus gangguan hubung singkat dua fasa pada sisi incoming TD 2 adalah 0% = 8246,42 Ampere dan 100% = 5247,19 Ampere, sementara di sisi feeder PL 07 adalah 0% = 8113,97 Ampere dan

100% = 1208,10 Ampere. Besarnya titik gangguan berpengaruh signifikan terhadap nilai arus gangguan hubung singkat [2]. Gangguan hubung singkat 2 fasa disebabkan karena hubungan antara dua fasa (misalnya fasa B-C) yang terhubung oleh tahanan. Pada gangguan hubung singkat 2 fasa, arus yang mengalir tidak mengandung komponen nol karena tidak ada gangguan yang tersambung ke tanah. Arus gangguan hubung singkat 2 fasa dihitung menggunakan rumus If2 = Vf / (Z1 + Z2), di mana Vf adalah tegangan fasa ke fasa dan Z1, Z2 adalah impedansi urutan positif dan negative [13]

Berikut adalah banyaknya gangguan yang terjadi dan kinerja sistem proteksi trafo tenaga 2 di Gardu Induk 150 KV Siempat Rube dari tahun 2022 sampai 2023:

# 1). Area trafo tenaga 2 Gardu Induk 150 KV Siempat Rube

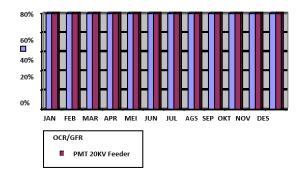

### Penyebab gangguan

Banyaknya gangguan yang terjadi pada area trafo tenaga 2 di Gardu Induk 150 KV Siempat Rube yang menyebabkan sistem proteksi bekerja:

Tabel 1. Gangguan pada Sistem Proteksi Area Trafo Tenaga 2 Tahun 2022 Sampai 2023.

| No.    | Bulan     | Penyebab Ga | Jumlah    |                 |      |
|--------|-----------|-------------|-----------|-----------------|------|
|        |           | Teknis      | Nonteknis | Tidak diketahui | Kali |
| 1      | Januari   | 3           | 4         | 2               | 9    |
| 2      | Febuari   | 4           | 10        | 1               | 15   |
| 3      | Maret     | 3           | 5         | 2               | 10   |
| 4      | April     | 1           | 3         | 1               | 5    |
| 5      | Mei       | 2           | 8         | -               | 10   |
| 6      | Juni      | 1           | 6         | 1               | 8    |
| 7      | Juli      | 1           | 6         | 1               | 8    |
| 8      | Agustus   | 3           | 9         | -               | 12   |
| 9      | September | -           | 1         | -               | 1    |
| 10     | Oktober   | -           | 12        | -               | 12   |
| 11     | November  | 4           | 5         | 2               | 11   |
| 12     | Desember  | 1           | 2         | 3               | 6    |
| Jumlah |           | 23          | 71        | 13              | 107  |

Gambar 2. Grafik Frekuensi Gangguan pada Sistem Proteksi Area Trafo Tenaga 2Tahun 2022 Sampai 2023




### Kinerja sistem proteksi

Banyaknya sistem proteksi yang bekerja saat terjadi gangguan pada area trafotenaga 2 di Gardu Induk 150 KV Siempat Rube :

Tabel 2. Persentase Keandalan Kinerja Rele Proteksi Pada Area Trafo Tenaga 2 Tahun 2022 Sampai 2023.

|     |                                 | Kinerja Rele Proteksi |     |                                        |   | mlah         | Gangguan | gguan    |  |
|-----|---------------------------------|-----------------------|-----|----------------------------------------|---|--------------|----------|----------|--|
|     | Rele Proteksi Trafo<br>Tenaga 2 | Mengamankan           |     | Tidak Mampu<br>Mengamankan<br>Gangguan |   | yang Dialami |          | Kriteria |  |
| No. | 1 chaga 2                       |                       |     |                                        |   | Kali %       |          |          |  |
|     |                                 |                       |     |                                        |   | Kan          | 70       |          |  |
|     |                                 | T                     | P   | T                                      | P |              |          |          |  |
| 1   | DR                              | -                     | -   | -                                      | - | -            | -        | -        |  |
| 2   | OVR/ UVR                        | -                     | -   | -                                      | - | -            | -        | -        |  |
| 3   | OCR/ GFR                        | -                     | 107 | -                                      | - | 107          | 100      | Baik     |  |
| 4   | OCR/ EF                         | -                     | -   | -                                      | - | -            | -        | -        |  |
| 5   | OLTC                            | -                     | -   | -                                      | - | -            | -        | -        |  |
| 6   | MCB DC                          | -                     | -   | -                                      | - | -            | -        | -        |  |
| 7   | PMT 150 KV                      | -                     | -   | -                                      | - | -            | -        | -        |  |
| 8   | PMT 20 KV                       | 7 -                   | -   | -                                      | - | -            | -        | -        |  |
|     | incoming                        |                       |     |                                        |   |              |          |          |  |
| 9   | PMT 20 KV feeder                | -                     | 107 | -                                      | - | 107          | 100      | Baik     |  |
|     | Jumlah                          | -                     | 214 | -                                      | - | 214          | 100      | Baik     |  |



Gambar 3. Grafik Persentase Kinerja Sistem Proteksi Are TrafoTenaga 2 Tahun2022 Sampai 2023.

# Kehilangan Daya

Banyaknya kehilangan daya yang diakibatkan oleh frekuensi gangguan yang terjadi padaarea trafo tenaga 2 di Gardu Induk 150 KV Siempat Rube yang menyebabkan sistem proteksi bekerja:

Tabel 3. Data Kehilangan Daya

| BULAN     | TAHUN 2022 (WATT) | TAHUN 2023 (WATT) |
|-----------|-------------------|-------------------|
| Januari   | 9284.81           | 226.98            |
| Februari  | 9211.46           | 1962.83           |
| Maret     | 701010.47         | 2687.48           |
| April     | 0                 | 430.43            |
| Mey       | 7119.95           | 50069.96          |
| Juni      | 864.12            | 889.22            |
| Juli      | 868.80            | 82.98             |
| Agustus   | 1181.62           | 1707.14           |
| September | 0                 | 64.00             |
| Oktober   | 1190.46           | 18104.24          |
| November  | 3296.49           | 837.14            |
| Desember  | 662.29            | 291899.81         |

Berdasarkan analisis data yang telah dikemukakan, dapat diketahui tingkat frekuensi gangguan yang mempengaruhi kinerja sistem proteksi trafo 2 di Gardu Induk 150 KV Siempat Rube:

## A. Penyebab terjadinya gangguan

Area transformator daya 2 di Gardu Induk 150 KV Siempat Rube mengalami gangguan yang memicu pengaktifan sistem proteksi. Gangguan ini dapat dikategorikan menjadi tiga jenis: gangguan teknis, gangguan non-teknis, dan gangguan yang tidak diketahui asalnya. Gangguan teknis timbul dari kerusakan peralatan di wilayah transformator daya dan penyulang, dengan sistem proteksi gagal beroperasi untuk transformator kesempatan dan untuk penyulang pada 23 kesempatan. Gangguan ini khususnya terjadi pada penyulang SE 01, SE 02, dan SE 05. Penyebab alamiah bertanggung jawab atas gangguan non-teknis, yang mengakibatkan sistem proteksi diaktifkan 0 kali untuk transformator dava dan 71 kali penyulang. Masalah ini juga terlihat pada penyulang SE 01, SE 02, dan SE 05. Secara bersamaan, gangguan yang tidak dapat dijelaskan memicu sistem proteksi untuk aktif 0 kali pada transformator daya dan 13 kali pada Insiden ini penvulang. secara memengaruhi pengumpan SE 01, SE 02, dan SE

Kehandalan sistem penyulang merupakan faktor kunci dalam memastikan kontinuitas pasokan listrik dan mengurangi gangguan. Menurut Siagian, Dalimunthe, dan Tharo (2023), analisis berbasis perangkat lunak seperti Matlab dapat membantu dalam mengevaluasi dan meningkatkan kehandalan sistem penyulang. Pemahaman mendalam mengenai kehandalan ini penting untuk merancang sistem proteksi yang efektif dan responsif terhadap berbagai gangguan [14].

### B. Kinerja sistem proteksi.

Kinerja sistem proteksi pada gardu induk sangat dipengaruhi oleh frekuensi gangguan yang terjadi. Sistem proteksi yang baik harus mampu mendeteksi, mengisolasi, memutuskan area yang terganggu secara cepat dan akurat untuk mencegah kerusakan lebih lanjut pada jaringan serta memastikan keandalan sistem tenaga listrik Transformator daya 2 telah menunjukkan kinerja yang dapat diandalkan dalam sistem proteksinya, berhasil mengamankan terhadap 107 gangguan dengan tingkat kemanjuran yang tinggi. Perilaku relai proteksi selama gangguan adalah sebagai berikut: Relai DR (Relai Diferensial) sangat andal, dengan tingkat ketergantungan 100%, karena tidak adanya gangguan sebelumnya. Relai OVR/UVR (Relai Tegangan Lebih/Relai Tegangan Rendah) sangat andal, memiliki tingkat keandalan 100%, karena tidak ada kejadian gangguan. Relai Breaker) memiliki (Mini Circuit ketergantungan sempurna sebesar 100% saat beroperasi dalam kondisi optimal, bebas dari gangguan apa pun. Relai PMT (Power Breaker) 150 KV memiliki ketergantungan sebesar 100% karena rekam jejaknya yang sempurna karena tidak pernah mengalami gangguan apa pun. **PMT** masuk 20 kV memiliki Relai ketergantungan 100% saat beroperasi dalam kondisi optimal dan tanpa gangguan apa pun. Relai pengumpan PMT 20 KV memiliki keandalan yang sempurna, karena beroperasi secara konsisten (trip) sebagai respons terhadap gangguan yang disebabkan oleh berbagai keadaan. Gangguan ini terjadi di semua transformator daya di Wilayah 2.

### C. Usaha penanganan gangguan.

PT PLN (Persero) Gardu Induk 150 KV Siempat Rube telah menerapkan langkahlangkah penanganan gangguan sesuai dengan anjuran pemeliharaan Gardu Induk yang meliputi beberapa proses. Pertama, in-service inspection adalah proses pemeriksaan pada saat transformator beroperasi dengan tujuan untuk mengetahui secara dini adanya penyimpangan tanpa harus mematikan transformator. Kedua. in-service Measurement adalah proses pengukuran atau pengujian transformator pada saat beroperasi untuk mengetahui kondisi transformator secara lebih menyeluruh tanpa harus mematikannya. Ketiga, shutdown testing adalah prosedur diagnostik yang dilakukan pada transformator saat tidak beroperasi, yang sering dilakukan pada saat perawatan rutin atau saat melakukan investigasi kelainan. Langkah keempat adalah melakukan shutdown function check. bertujuan untuk menilai yang fungsionalitas relai proteksi dan indikator pada transformator. Terakhir, treatment adalah tindakan perbaikan berdasarkan hasil in-service inspection, in-service Measurement, shutdown Measurement, dan shutdown function check.

### 5. KESIMPULAN

menganalisis Penelitian ini frekuensi gangguan terhadap kinerja sistem proteksi di Gardu Induk 150 KV Siempat Rube, yang berperan penting dalam pengelolaan beban listrik dan menghadapi gangguan teknis, nonteknis, serta gangguan dengan penyebab yang tidak diketahui. Sistem proteksi menggunakan Relay Differensial dan Over Current Relay menunjukkan keandalan yang sangat baik, dengan tingkat keberhasilan mengamankan gangguan sebesar 100% pada trafo tenaga 2 selama tahun 2022 hingga 2023, mencerminkan pengaturan proteksi yang optimal. Gangguan teknis terkait dengan kerusakan peralatan, sedangkan gangguan non-teknis disebabkan oleh faktor alam seperti petir dan angin. Untuk mengatasi gangguan, PT PLN (Persero) Gardu Induk 150 KV Siempat Rube menerapkan berbagai langkah pemeliharaan termasuk inspeksi, pengukuran, dan evaluasi relai proteksi untuk mendeteksi dan menangani gangguan secara dini. Penelitian menegaskan pentingnya sistem proteksi yang andal dalam menjaga kestabilan jaringan listrik dan mengurangi dampak gangguan, serta menyoroti perlunya peningkatan berkelanjutan pada sistem pemantauan dan respons proteksi untuk menghadapi tantangan gangguan yang tidak terduga di masa depan.

### **DAFTAR PUSTAKA**

- [1] B. Anwar and S. T. Agus Supardi, "Penentuan Hot Point dengan menggunakan metode thermovisi pada gardu induk 150 kV Purwodadi," Doctoral dissertation, Universitas Muhammadiyah Surakarta, 2019.
- [2] M. A. A. Auliq and I. B. Pratama, "Analisa Penentuan Estimasi Jarak Gangguan pada Sistem Distribusi Menggunakan Metode ETAP

- 12.6.0," Jurnal Teknik Elektro dan Komputasi (ELKOM), vol. 3, no. 1, pp. 31-42, 2021.
- [3] P. Utomo, "Studi Analisis Kualitas Transformator Daya Gardu Induk 150 kV Siantan," Journal of Electrical Engineering, Energy, and Information Technology (J3EIT), vol. 7, no. 1, 2019.
- [4] M. Holong, "Konsep Gardu Dasar Induk," *Modal Holong*, Feb. 2011. [Online]. Available: http://modalholong.files.wordpress.com/2011/0 2/konsep-dasar-gardu-induk.pdf. [Accessed: Feb. 13, 2013].
- [5] D. M. Dhudona, D. Mulia, et al., "Analisa Setting Relay Differensial Tipe Nr 9671 Transformator Daya 60 MVA 150 KV di Gardu Induk Mabar," Kumpulan Karya Ilmiah Mahasiswa Fakultas Sains dan Teknologi, 2021.
- [6] D. N. Prameswari, "Analisis Kinerja Sistem Proteksi Berdasarkan Frekuensi Gangguan Di Gardu Induk 150 KV Padalarang Baru," Ph.D. dissertation, Universitas Siliwangi, 2022.
- [7] B. Anwar and S. T. Agus Supardi, "Penentuan Hot Point dengan menggunakan metode thermovisi pada gardu induk 150 kV Purwodadi," Doctoral dissertation, Universitas Muhammadiyah Surakarta, 2019.
- [8] O. H. Sepang, H. Tumaliang, and N. M. Tulung, "Penataan Instalasi Listrik dan Besar Daya di Ruangan Tertentu dalam Rangka Kondisi Covid-19 di Gedung RS. Kinapit Kotamobagu," *Jurnal Teknik Elektro Universitas Sam Ratulangi*, vol. 1, no. 1, pp. 1-6, 2021.
- [9] T. Aryanto, Sutarno, and S. Sunardiyo, "Frekuensi Gangguan Terhadap Kinerja Sistem Proteksi di Gardu Induk 150 KV Jepara," *Jurnal Teknik Elektro*, vol. 5, no. 2, pp. 107–115, Jul.–Dec. 2013.
- [10] A. Wibowo, M. Mujiman, and W. Handajadi, "Frekuensi Gangguan Terhadap Kinerja Sistem Proteksi di Gardu Induk 150 KV Bantul," *Jurnal Elektrikal*, vol. 2, no. 1, pp. 27-35, Jun. 2015.
- [11] E. S. Nasution, F. I. Pasaribu, Y. Yusniati, and M. Arfianda, "Rele diferensial sebagai proteksi pada transformator daya pada gardu induk," Ready Star, vol. 2, no. 1, pp. 179-186, 2019.
- [12] D. M. Dhudona, D. Mulia, et al., "Analisa Setting Relay Differensial Tipe Nr 9671 Transformator Daya 60 MVA 150 KV di Gardu Induk Mabar," Kumpulan Karya Ilmiah Mahasiswa Fakultas Sains dan Teknologi, 2021.
- [13] A. Siagian, S. Abendanon, et al., "Analisis Kehandalan Sistem Konfigurasi Jaringan Penyulang 20 KV di PT. PLN (Persero) ULP Pakam Kota Berbasis Matlab," Jurnal Rekayasa Elektro Sriwijaya, vol. 5, no. 1, pp. 18-31, 2023.
- [14] I. Safitri, G. Gunawan, and A. A. Nugroho, "Analisa Koordinasi Setting Proteksi Over Current Relay (OCR) Outgoing 20 kV dan

- Recloser pada Trafo II 60 MVA Feeder RBG 01 di Gardu Induk 150 kV Rembang," *Elektrika*, vol. 12, no. 1, pp. 22-30, 2020.
- vol. 12, no. 1, pp. 22-30, 2020.

  [15] A. Siagian, M. E. Dalimunthe, and Z. Tharo,
  "Analisis Kehandalan Sistem Konfigurasi
  Jaringan Penyulang 20 KV di PT. PLN
  (Persero) ULP Pakam Kota Berbasis Matlab,"
  Jurnal Rekayasa Elektro Sriwijaya, vol. 5, no. 1,
  pp. 18-31, 2023.