Studi Kelayakan Pembangunan Proyek Jalan Layang (Fly Over) pada Ruas Jalan R.A. Basyid – Untung Suropati Ditinjau dari Segi Teknik Lalu Lintas dan Ekonomi

Alfrido Wiranata Hutagalung 1) Rahayu Sulistyorini²⁾ Dwi Herianto³⁾

Abstract

Traffic jam is a problem that always exists as an area develops, especially at the Untung Suropati intersection in Bandarlampung City. To solve the problem, a fly over is built and a feasibility study is needed.

Feasibility studies conducted are reviewed in terms of traffic performance using pkji method. In terms of economy, it is reviewed from BCR and NPV parameters by analyzing saving of vehicle operating costs variables and Vehicle Travel Time Value.

With the development, the degree of saturation for the direction of Labuhan Dalam – Labuhan Ratu decreased from 0.57 to 0.32, for the direction of Labuhan Ratu – Labuhan Dalam reduced from 0.66 to 0.32, for way Halim – Rajabasa reduced from 0.80 to 0.41 and for rajabasa direction – Way Halim reduced from 0.82 to 0.46 so it is said to be feasible in terms of traffic performance. In terms of economy obtained bcr value is 10,059 and NPV is Rp 398,062,846,073.96. So in terms of economics it is said to be feasible.

Keywords: Feasibility, Flyover, Traffic jam

Abstrak

Kemacetan lalu lintas adalah masalah yang selalu ada seiring berkembangnya suatu daerah, khususnya pada simpang Untung Suropati yang berada di Kota Bandarlampung. Untuk mengatasi masalah tersebut, dibangun jalan layang (fly over) dan perlu dilakukan studi kelayakan.

Studi kelayakan yang dilakukan ditinjau dari segi kinerja lalu lintas menggunakan metode PKJI. Dari segi ekonomi ditinjau dari parameter BCR dan NPV dengan menganalisa variabel penghematan BOK dan Nilai Waktu Tempuh Kendaraan.

Dengan pembangunan tersebut, derajat kejenuhan untuk arah Labuhan Dalam – Labuhan Ratu berkurang dari 0,57 ke 0,32, untuk arah Labuhan Ratu – Labuhan Dalam berkurang dari 0,66 ke 0,32, untuk arah Way Halim – Rajabasa berkurang dari 0,80 ke 0,41 dan untuk arah Rajabasa – Way Halim berkurang dari 0,82 ke 0,46 sehingga dikatakan layak dari segi kinerja lalu lintas. Dari segi ekonomi diperoleh nilai BCR adalah 10,059 dan NPV adalah Rp 398.062.846.073,96. Sehingga dari segi ekonomi dikatakan layak.

Kata kunci: studi kelayakan, fly over, kemacetan

¹⁾ Mahasiswa pada Jurusan Teknik Sipil Fakultas Teknik Universitas Lampung.

²⁾ Staf pengajar pada Jurusan Teknik Sipil Fakultas Teknik Universitas Lampung. Jalan. Prof. Sumantri Brojonegoro 1. Gedong Meneng Bandar lampung.

³⁾ Staf pengajar pada Jurusan Teknik Sipil, Fakultas Teknik Universitas Lampung. Jalan Prof. Sumantri Brojonegoro 1. Gedong Meneng Bandar Lampung.

1. PENDAHULUAN

Seiring dengan berkembangnya suatu daerah, maka menuntut perkembangan sarana dan prasarana transportai demi kelancaran arus barang dan jasa. Seiring meningkatnya populasi kendaraan, seperti angkutan umum dan angkutan pribadi akan bertambah pula masalah transportasi. Permasalahan tersebut yaitu kemacetan. Pertumbuhan kawasan di sekitar jalan R.A Basyid – Untung Suropati juga memberi pengaruh pada arus lalu lintas di jalan tersebut, khususnya pada jam sibuk pagi hari dan jam sibuk sore hari. Oleh karena itu pemerintah membangun jalan layang (fly over) sebagai solusi dari kemacetan tersebut dan perlu dilakukan studi kelayakan pada proyek tersebut. Dalam studi kelayakan yang dilakukan, ada dua aspek yang dianalisis yaitu aspek kinerja lalu lintas dan ekonomi. Dari segi aspek kinerja lalu lintas menggunkan metode Pedoman Kapasitas Jalan Indonesia (PKJI) dengan menganalisa nilai Derajat Kejenuhan dan Kapasitas. Dari segi ekonomi menganalisa penghematan Biaya Operasional Kendaraan dan Nilai Waktu Tempuh Kendaraan.

2. TINJAUAN PUSTAKA

2.1. Studi Kelayakan

Menurut Kementrian Pekerjaan Umum dan Perumahan Rakyat Tahun 2017 bahwa studi kelayakan adalah kegiatan menganalisa, mengkaji dan meneliti berbagai aspek usaha/proyek yang telah atau akan dilaksanakan sehingga memberi gambaran layak atau tidak.

2.2. Tingkat Pelayanan (Level of Service)

Tingkat Pelayanan jalan merupakan kondisi gabungan yang ditunjukkan dar hubungan antara volume kendaraan dibagi kapasitas dan kecepatan. Perilaku lalu lintas diwakili oleh tingkat pelayanan yaitu secara kualitatif yang mencerminkan persepsi pengemudi tentang kualitas mengendarai (Tamin, 2002).

Tingkat Pelayanan	Tundaan (detik/skr)	Tingkat Kejenuhan
A	≤ 5,0	≤ 0,35
В	$> 5.0 \text{ dan } \le 15.0$	≤ 0,54
С	$> 15,0 \text{ dan } \le 25,0$	≤ 0,77
D	$> 25,0 \text{ dan} \le 40,0$	≤ 0,95
Е	$> 40,0 \text{ dan} \le 60,0$	≤ 1,00
F	> 60,0	≥ 1,00

Tabel 1. Tingkat Pelayanan Jalan

2.3. Biaya Operasional Kendaraan

Biaya Operasional Kendaraan (BOK) adalah total biaya yang dikeluarkan oleh pengguna kendaraan dengan menggunakan moda tertentu yang bergerak dari zona asal ke zona tujuan. BOK terdiri dari komponen yaitu biaya tetap dan biaya tidak tetap. Metode yang digunakan yaitu metode PCI Model.

2.4. Nilai Waktu

Nilai waktu merupakan nilai dari waktu yang terpakai pada saat bertransportasi sebagai analisis ekonomi, nilai ini akan meningkat dengan bertambah lamanya waktu perjalanan (Siagan, 2018). Nilai Waktu dihitung menggunakan persamaan berikut :

$$Nilai Waktu = \frac{PDRB/JP}{WKT} \tag{1}$$

Keterangan:

PDRB = Pendapatan Domestik Regional Bruto (perkapita/Rp)

JP = Jumlah Penduduk (orang) WKT = Waktu Kerja Tahunan (jam)

2.5. Benefit Cost Ratio (BCR)

Perthitungan dilakukan dengan membandingkan semua manfaat (*benefit*) dengan semua biaya (*cost*) total yang dibutuhkan setelah dikonversikan kedalam nilai uang sekarang (*present value*). Besarnya nilai BCR adalah BCR < 1; BCR = 1; BCR > 1. Nilai BCR < 1 artinya manfaat yang diterima lebih kecil dari biaya yang dikeluarkan, BCR = 1 artinya manfaat yang diterima seimbang dengan biaya yang dikeluarkan, BCR > 1 artinya manfaat yang diterima lebih besar dibandingkan biaya yang dikeluarkan.

2.6 Nett Present Value (NPV)

Nilai NPV diperoleh dengan selisih dari semua manfaat dengan semua biaya yang relevan selama umur layan setelah dikonversi dengan nilai uang yang sama. Besarnya nilai NPV (-), NPV (0) dan NPV (+). Nilai NPV = (-) menunjukkan bahwa biaya yang dikeluarkan lebih besar daripada manfaat yang diperoleh. NPV = 0 menunjukkan bahwa manfaat yang diperoleh seimbang dengan biaya yang dikeluarkan, sedangkan NPV = (+) menunjukkan bahwa manfaat yang diperoleh melebihi biaya yang dikeluarkan.

3. METODE PENELITIAN

3.1. Lokasi

Lokasi penelitian dilakukan di persimpangan Jalan R.A. Basyid – Untung Suropati dan Jalan Soekarno-Hatta. Total panjang fly over dibangun sepanjang 700 m.

3.2. Waktu Penelitian

Waktu penelitian dilakukan selama 3 hari yaitu hari Senin, Rabu dan Sabtu pada jam sibuk pagi (pukul 06.30 - 07.30) dan sore (pukul 16.30 - 17.30).

3.3. Pengumpulan Data

Dalam penyusunan penelitian dibutuhkan beberapa data yaitu :

Geometrik Jalan

Data ini diperoleh dengan meninjau atau mengukur dimensi jalan secara langsung dan dapat dilihat dari data gambar rencana pembangunan *Fly Over* tersebut.

Data LHR

Data LHR diperoleh dengan melakukan taffic counting pada lokasi studi dengan 4 surveyor pada 4 arah jalan. Sedangkan data LHR pada kondisi sebelum adanya *Fly Over* didapatkan dari penelitian terdahulu.

Jumlah Penduduk

Data Jumlah Penduduk didapatkan dari Badan Pusat Statistik Bandarlampung.

Komponen BOK

Daftar harga komponen BOK diperoleh dari survey pada toko otomotif, harga BBM, harga mobil dan lain-lain.

3.4. Analisa Data

Data-data yang sudah dikumpulkan akan dianalisis yang terdiri dari :

3.4.1. Volume Lalu Lintas

Volume lalu lintas merupakan jumlah kendaraan yang melewati suatu titik dalam satu lintasan atau segmen jalan pada satuan waktu tertentu yang dinyatakan dengan satuan

kendaraan per jam (kend/jam) yang kemudian dikonversikan menjadi satuan kendaraan ringan per jam (skr/jam).

3.4.2. Derajat Kejenuhan

Derajat Kejenuhan adalah ukuran utama menentukan tingkat kinerja lalu lintas. Derajat kejenuhan dihitung dengan rumus :

$$Dj = \frac{q}{C} \tag{1}$$

Keterangan:

Dj = Derajat Kejenuhan

q = Arus Lalu Lintas (skr/jam) C = Kapasitas Jalan (skr/jam)

4. HASIL DAN PEMBAHASAN

4.1. Volume Lalu Lintas (O)

Pada penelitian ini volume lalu lintas yang melewati simpang *Fly Over* Jalan R.A. Basyid – Untung Suropati dan Jalan Soekarno-Hatta dapat dilihat pada Tabel 2 sebagai berrikut :

Pendekat	Arah		Jenis Kendaraan (skr/jam)			Total	
Pendekat	Pergerakan	SM	KR	KB/KBM	TB	BB	(skr/jam)
T 1 1	Lurus	358	124	2	-	-	484
Labuhan Dalam	Belok Kiri	347	128	14	-	-	489
Dalaili	Total	705	252	17	-	-	974
***	Lurus	570	657	776	167	70	2169
Way Halim	Belok Kiri	321	97	5	2	0	424
11411111	Total	890	754	781	168	70	2593
T 1 1	Lurus	321	141	2	-	-	464
Labuhan Dalam	Belok Kiri	267	135	12	-	-	414
Dalaili	Total	588	276	14	-	-	878
Rajabasa	Lurus	770	690	119	119	4	1728
	Belok Kiri	200	78	3	3	0	295
	Total	969	768	122	122	4	2022

Tabel 2. Volume Kendaraan

4.2. Derajat Kejenuhan (Dj)

Perhitungan nilai derajat kejenuhan pada kondisi sesudah pembangunan *Fly Over*. Nilai Derajat Kejenuhan tertera dalam Tabel 3.

Tabel 3. Nilai Derajat Kejenuhan Sesudah Pembangunan

Arah	Arus Lalu Lintas (Q)	Kapasitas (C)	Derajat Kejenuhan (Dj)
Rajabasa	1728 skr/jam	3718 skr/jam	0,46
Way Halim	1518 skr/jam	3718 skr/jam	0,41
Labuhan Dalam dan Labuhan Ratu	949 skr/jam	2973 skr/jam	0,32

Tabel 4. Perubahan Derajat Kejenuhan

Arah/Pendekat	Tahun 2019 (tanpa fly over)	Tahun 2020 (dengan fly over)	
	Dj	Dj	
U (Labuhan Dalam)	0,57	0,32	
S (Labuhan Ratu)	0,66	0,32	
T (Way Halim)	0,80	0,41	
B (Rajabasa)	0,82	0,46	

4.2. Kecepatan Kendaraan

Kecepatan kendaraan dihitung menggunakan metode *moving car observed*. Kecepatan kendaraan pada kondisi sesudah pembangunan dapat dilihat pada Tabel 5.

Tabel 5. Hasil Kecepatan Tiap Arah Sesudah Pembangunan

Pendekat	Kecepatan (km/jam)
Labuhan Dalam – Labuhan Ratu (2/2 TT)	42,81
Rajabasa (4/2 T)	62,67
Way Halim (4/2 T)	62,60

Tabel 6. Kecepatan Kendaraan Sebelum Pembangunan

		Titik K	Titik Kontrol		Bergerak	
Jam Kendaraan	Jam Survey	Waktu Perjalanan	Panjang	Hambatan	Waktu Bergerak	Kec. Bergerak
		(menit)	(meter)	(menit)	(menit)	(km/jam)
Sepeda Motor	08.00- 09.00	1,743	300	0,893	0,850	0,353
Mobil Penumpan g	08.00- 09.00	2,067	300	0,919	1,149	0,261
Truk/Bus	08.00- 09.00	2,154	300	0,919	1,236	0,243

4.3. Biaya Operasional Kendaraan (BOK)

Nilai penghematan BOK adalah selisih nilai BOK pada saat sebelum dan sesudah pembangunan jalan layang (*Fly Over*). Nilai selisih BOK terlampir pada tabel dibawah ini:

Tabel 7. Selisih BOK untuk Kedua Arah dalam Tahun Pertama

	Arah Labuhan Dalam – Labuhan Ratu	Arah Way Halim – Rajabasa
Gol. Kendaraan	Selisih (Benefit)	Selisih (Benefit)
Ι	Rp 11.542.464,82	Rp 16.259.574,16
II	Rp 4.243.307,13	Rp 29.878.673,71
III	Rp 433.105,25	Rp 23.907.682,74
Sub Total	Rp 16.218.877,20	Rp 70.045.930,62
Total		Rp 86.264.807,82
Total Benefit Selama Setahun		Rp 31.486.654.852,85

Tabel 8. Selisih BOK (Manfaat) dari Tahun 2020 – 2039

Tahun Ke-	Tahun	Selisih BOK (Manfaat)
1	2020	Rp 30.399.034.218,91
2	2021	Rp 31.486.654.852,85
3	2022	Rp 32.661.011.599,19
4	2023	Rp 33.880.262.067,99
5	2024	Rp 35.146.503.857,78
6	2025	Rp 36.461.038.249,59
7	2026	Rp 37.825.685.887,18
8	2027	Rp 39.242.470.899,76
9	2028	Rp 40.713.322.297,07
10	2029	Rp 42.240.346.699,37
11	2030	Rp 43.825.132.589,21
12	2031	Rp 45.469.912.851,94
13	2032	Rp 47.177.165.583,15
14	2033	Rp 48.948.371.921,41
15	2034	Rp 49.000.206.863,94
16	2035	Rp 48.942.553.065,03
17	2036	Rp 48.932.899.035,23
18	2037	Rp 48.918.705.712,36
19	2038	Rp 48.896.034.423,33
20	2039	Rp 48.839.868.931,01
Tot	al	Rp 839.007.181.606,29

4.3. Nilai Waktu Tempuh Kendaraan

Penghematan nilai waktu tempuh perjalanan diperoleh dari selisih perhitungan waktu tempuh sebelum pembangunan dan sesudah pembangunan jalan layang (*Fly Over*). Waktu tempuh pada dua kondisi tertera pada tabel dibawah ini :

Tabel 9. Waktu Tempuh dengan Proyek

Arah	Gol. Kendaraan	Waktu Tempuh (detik)
	Gol. I	25,23
Labuhan Dalam – Labuhan Ratu —	Gol. II	25,23
Tuttu	Gol. III	25,23
	Gol. I	15,80
Way Halim - Rajabasa	Gol. II	15,80
	Gol. III	15,80

Tabel 10. Waktu Tempuh tanpa Proyek

	Golongan Kendaraan	Waktu Tempuh (detik)
Gol. I		138
Gol. II		187
Gol. III		198

Tabel 11. Selisih (Penghematan) Nilai Waktu Tempuh

Selisih Nilai Waktu Tempuh
Rp 832,07
Rp 1.192,87
Rp 1.273,87

4.4. Perhitungan BCR dan NPV

Tujuan analisa perhitungan BCR dan NPV sebagai parameter analisa kelayakan dari segi ekonomi. Pada dasarnya analisa ini membandingkan besarnya cost yang dikeluarkan dengan besarnya benefit yang diterima untuk pengguna jalan yang didapat dari pembangunan tersebut. Perhitungan BCR dan NPV tertera pada tabel dibawah ini :

Tabel 12. Perhitungan Penghematan BOK dan Nilai Waktu

Tahun	n	Penghematan BOK	Penghematan Nilai Waktu
2019	0		
2020	1	Rp 30.399.034.219	Rp 6.342.292
2021	2	Rp 31.486.654.853	Rp 6.546.867
2022	3	Rp 32.661.011.599	Rp 6.773.856
2023	4	Rp 33.880.262.068	Rp 7.088.676
2024	5	Rp 35.146.503.858	Rp 7.251.159
2025	6	Rp 36.461.038.250	Rp 7.501.961
2026	7	Rp 37.825.685.887	Rp 7.761.333
2027	8	Rp 39.242.470.900	Rp 8.029.314
2028	9	Rp 40.713.322.297	Rp 8.306.078
2029	10	Rp 42.240.346.699	Rp 8.591.491
2030	11	Rp 43.825.132.589	Rp 8.886.537
2031	12	Rp 45.469.912.852	Rp 9.191.167
2032	13	Rp 47.177.165.583	Rp 10.256.420
2033	14	Rp 48.948.371.921	Rp 10.561.799
2034	15	Rp 49.000.206.864	Rp 10.831.158
2035	16	Rp 48.942.553.065	Rp 11.179.388
2036	17	Rp 48.932.899.035	Rp 11.527.490
2037	18	Rp 48.918.705.712	Rp 11.179.388
2038	19	Rp 48.896.034.423	Rp 11.527.490
2039	20	Rp 48.839.868.931	Rp 11.830.921

Tabel 13. Perhitungan BCR dan NPV

Tahun	n	Total Biaya	Total Manfaat	i = 4%	PV Cost	PV Benefit
2019	0	Rp 54.705.983.130		1,000	Rp 54.705.983.130,00	
2020	1		Rp 30.405.376.511	0,962	-	Rp 29.235.938.953,20
2021	2		Rp 31.493.201.719	0,925	-	Rp 29.117.235.317,47
2022	3		Rp 32.667.785.455	0,889	-	Rp 29.041.542.315.38
2023	4		Rp 33.887.270.744	0,855	-	Rp 29.966.981.054,84
2024	5		Rp 35.153.755.016	0,822	-	Rp 28.893.824.152,37
2025	6		Rp 36.468.540.210	0,790	-	Rp 28.821.617.060,48
2026	7		Rp 37.833.447.220	0,760	-	Rp 28.750.310.477,12
2027	8		Rp 39.250.500.213	0,731	-	Rp 28.679.956.047,40
2028	9		Rp 40.721.628.375	0,703	-	Rp 28.610.475.947,40
2029	10		Rp 42.248.938.190	0,676	-	Rp 28.541.868.812,43
2030	11		Rp 43.834.019.126	0,650	-	Rp 28.473.742.978,23
2031	12		Rp 45.479.104.019	0,625	-	Rp 28.406.114.188,04
2032	13		Rp 47.186.669.246	0,601	-	Rp 28.339.090.760,12
2033	14		Rp 48.958.197.647	0,577	-	Rp 28.272.139.241,01
2034	15		Rp 49.010.463.283	0,555	-	Rp 27.213.770.522,85
2035	16		Rp 48.953.114.864	0,534	-	Rp 26.136.468.251,41
2036	17		Rp 48.943.730.193	0,513	-	Rp 25.126.401.633,48
2037	18		Rp 48.929.885.100	0,494	-	Rp 24.153.167.243,19
2038	19		Rp 48.907.561.913	0,475	-	Rp 23.213.603.740,64
2039	20		Rp 48.851.699.852	0,456	-	Rp 22.295.278.112,27
			total		Rp 54.705.983.130,00	Rp 550.289.526.809,43
		•	BCR		10,059	
		•	NPV		Rp 495.583.543.679,43	

5. Kesimpulan

Berdasarkan hasil penelitian dan analisa yang dilakukan pada kondisi sesudah dan sebelum pembangunan jalan layang (*Fly Over*) diperoleh kesimpulan bahwa dengan adanya pembangunan tersebut menunjukkan perubahan kinerja lalu lintas pada Jalan R.A. Basyid – Untung Suropati dan Jalan Soekarno -Hatta menjadi lebih baik. Nilai Derajat Kejenuhan pada bagian pendekat U berubah dari 0,57 ke 0,32, pada bagian pendekat S berubah dari 0,66 ke 0,32, pada bagian pendekat T berubah dari 0,80 ke 0,41 dan pada pendekat B berubah dari 0,82 ke 0,46. Sedangkan pada perhitungan analisa ekonomi yang dilakukan menggunakan metode BCR dan NPV dengan tingkat suku bunga 4% menunjukkan nilai *Benefit Cost Ratio* = 10,059 (BCR > 1) dan nilai *Nett Present Value* = Rp 398.062.846.073,96 (NPV > 0). Jadi secara teknis dan ekonomis pembangunan Fly Over Jalan R.A. Basyid – Untung Suropati adalah layak.

DAFTAR PUSTAKA

- Kementrian Pekerjaan Umum dan Perumahan Rakyat. *Pedoman Kapasitas Jalan Indonesia*. 2014.
- Kementrian Pekerjaan Umum dan Perumahan Rakyat. Modul 1 Pemahaman Umum Studi Kelayakan Proyek Infrastruktur. 2017.
- Tamin, O.Z. 2000. Perencanaan dan Permodelan Transportasi Edisi 2. Institut Teknologi Bandung, Bandung.
- Siagian, Andre Jonathan. 2018. Analisis Ekonomi dan Finansial Shortcut Tegineneng Tarahan. Fakultas Teknik. Universitas Lampung. Lampung.