Vol. 13 No. 3S1, pISSN: 2303-0577 eISSN: 2830-7062

http://dx.doi.org/10.23960/jitet.v13i3S1.8022

USER-CENTERED DESIGN UNTUK PERANCANGAN UI/UX SISTEM INFORMASI CAPAIAN PEMBELAJARAN LULUSAN

Rama Wahyu Ajie Pratama^{1*}, Trisya Septiana², Rio Ariesta Pradipta³

^{1,2,3}Universitas Lampung; Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung; +62 721 701609

Keywords:

Capaian Pembelajaran Lulusan (CPL); Heuristic Evaluation; UI/UX; User-Centered Design (UCD); User Experience Questionnaire (UEQ).

Corespondent Email: ramawahyu900@gmail.com

admin program studi dalam melakukan pengelolaan dan evaluasi Capaian Pembelajaran Lulusan (CPL) secara lebih terstruktur dan efisien. Penelitian ini berfokus pada proses perancangan antarmuka pengguna (UI) dan pengalaman pengguna (UX) berbasis web dengan pendekatan User-Centered Design (UCD) yang menekankan pada kebutuhan nyata pengguna. Perancangan dilakukan dengan memanfaatkan Figma sebagai alat prototyping, mencakup empat peran utama pengguna, serta menghasilkan total 114 halaman antarmuka. Untuk menjamin kualitas rancangan, dilakukan evaluasi melalui Heuristic Evaluation yang berhasil mengidentifikasi dua masalah minor terkait konsistensi, dan permasalahan tersebut telah diperbaiki pada tahap berikutnya. Selain itu, pengujian lebih lanjut dengan menggunakan User Experience Questionnaire (UEQ) terhadap 13 responden menunjukkan hasil yang sangat baik, di mana seluruh aspek memperoleh kategori excellent. Skor tertinggi terdapat pada aspek kejelasan dan ketepatan, sementara aspek kebaruan memperoleh skor terendah namun tetap berada pada kategori positif. Temuan ini menegaskan bahwa prototipe SIP-CPL memiliki tingkat kegunaan yang tinggi, ramah pengguna, serta dapat dijadikan landasan kuat dalam tahap implementasi sistem di masa mendatang.

Sistem Informasi Pengelolaan Capaian Pembelajaran Lulusan (SIP-CPL)

dirancang sebagai sebuah solusi yang dapat membantu dosen, pemantau, serta

Copyright © JITET (Jurnal Informatika dan Teknik Elektro Terapan). This article is an open access article distributed under terms and conditions of the Creative Commons Attribution (CC BY NC)

Abstract. The Graduate Learning Outcomes Information Management System (SIP-CPL) is designed as a solution to assist lecturers, evaluators, and program administrators in managing and assessing Graduate Learning Outcomes (GLOs) in a more structured and efficient manner. This study focuses on the design of a web-based User Interface (UI) and User Experience (UX) using the User-Centered Design (UCD) approach, which emphasizes the actual needs of users. The design process was carried out using Figma as a prototyping tool, covering four main user roles and producing a total of 114 interface pages. To ensure the quality of the design, an evaluation was conducted using Heuristic Evaluation, which identified two minor issues related to consistency, both of which were addressed in the subsequent stage. Furthermore, additional testing using the User Experience Questionnaire (UEQ) with 13 respondents showed excellent results, where all aspects achieved the excellent category. The highest scores were found in clarity and accuracy, while novelty received the lowest score but still remained within the positive category. These findings confirm that the SIP-CPL prototype has a high level of usability, is user-friendly, and can serve as a strong foundation for future system implementation..

1. PENDAHULUAN

Perguruan tinggi berperan penting dalam mencetak sumber daya manusia yang berkualitas dan memiliki daya saing di era globalisasi [1]. Untuk mewujudkan hal tersebut, setiap program studi perlu memastikan bahwa Capaian Pembelajaran Lulusan (CPL) tercapai sesuai standar yang berlaku serta relevan dengan kebutuhan kompetensi dunia kerja [2]. Namun, hingga saat ini program studi di Universitas Lampung belum memiliki sistem khusus yang dapat digunakan untuk melakukan perhitungan CPL secara terintegrasi.

Berdasarkan Standar Nasional Pendidikan Tinggi (SN-Dikti), penilaian akreditasi didasarkan pada prinsip outcomebased accreditation yang menitikberatkan pada ketercapaian CPL [3]. Dengan demikian, CPL komponen menjadi kunci pengembangan, implementasi, dan evaluasi kurikulum, serta menjadi indikator utama dalam proses akreditasi baik di tingkat nasional maupun internasional. Oleh karena dibutuhkan sistem informasi yang mampu menyajikan data CPL secara akurat agar program studi dapat memenuhi standar BAN-PT dengan lebih optimal.

Perkembangan teknologi informasi menawarkan solusi efektif untuk meningkatkan efisiensi pengelolaan data akademik [4]. Sistem informasi yang dirancang dengan baik tidak berfungsi dalam mengolah hanya menyajikan data secara real-time [5], tetapi juga memperhatikan aspek interaksi pengguna. Dengan demikian, perancangan antarmuka pengguna (UI) dan pengalaman pengguna (UX) menjadi krusial agar sistem mudah digunakan sesuai kebutuhan berbagai pemangku kepentingan, seperti ketua program studi, dosen, maupun admin akademik.

Pendekatan **User-Centered** Design (UCD) dipilih dalam perancangan sistem ini karena berfokus pada kebutuhan pengguna [6]. Melalui observasi dan wawancara, sistem dirancang dengan antarmuka yang sederhana, konsisten, serta meminimalkan potensi kesalahan penggunaan. Dengan adanya rancangan Sistem Informasi Pengelolaan Capaian Pembelaiaran Lulusan (SIP-CPL), diharapkan proses evaluasi, pengambilan keputusan akademik, pemenuhan standar akreditasi dapat dilakukan secara lebih efektif. Selain itu, rancangan ini juga dapat dijadikan dasar bagi pengembangan sistem yang lebih lanjut untuk meningkatkan kualitas UI/UX di masa mendatang.

2. TINJAUAN PUSTAKA

2.1. Capaian Pembelajaran Lulusan (CPL)

Berdasarkan Peraturan Presiden Republik Indonesia Nomor 8 Tahun 2012 tentang Kerangka Kualifikasi Nasional Indonesia (KKNI), Capaian Pembelajaran didefinisikan sebagai seperangkat kemampuan yang dimiliki oleh lulusan sebagai hasil dari proses pendidikan yang menyeluruh. Capaian ini mencakup penguasaan pengetahuan, sikap, keterampilan, kompetensi, serta pengalaman kerja yang relevan. Dengan demikian, CPL berperan sebagai acuan standar kompetensi lulusan yang wajib dicapai pada akhir program studi [3].

2.2. UI/UX

User Interface (UI) berfokus pada tampilan antarmuka sebagai media interaksi antara pengguna dan sistem, mencakup tata letak, tipografi, ikon, serta elemen visual lainnya. Sementara itu, User Experience (UX) menitikberatkan pada kenyamanan dan kemudahan pengguna dalam berinteraksi, meliputi navigasi, kecepatan respons, kejelasan informasi, dan efektivitas sistem dalam membantu mencapai tujuan. Keduanya saling melengkapi untuk menciptakan aplikasi yang menarik, intuitif, dan memuaskan [7].

2.3. User-Centered Design (UCD)

User-Centred Design (UCD) adalah pendekatan pengembangan perangkat lunak yang berfokus pada kebutuhan, tujuan, dan pengalaman pengguna. Dengan melibatkan pengguna dalam perancangan dan pengujian, UCD membantu menghasilkan sistem yang efisien, mudah digunakan, serta memberikan pengalaman positif. UCD terdiri dari empat tahap utama: memahami konteks penggunaan, menentukan kebutuhan pengguna, merancang solusi desain, dan mengevaluasi desain sesuai kebutuhan [6] [8].

2.4. Use Case Diagram

Use case diagram merupakan teknik untuk mendokumentasikan kebutuhan fungsional suatu sistem dan menggambarkan fungsionalitas yang diharapkan. Diagram ini menitikberatkan pada apa yang dapat dilakukan sistem, bukan bagaimana cara kerjanya. Setiap use case menunjukkan interaksi antara aktor

dan sistem dalam menjalankan fungsi tertentu [9].

2.5. Information Architecture (AI)

Information Architecture (IA) adalah praktik merancang, mengelompokkan, dan menyusun elemen dalam sebuah sistem, seperti website, aplikasi, atau platform digital, sehingga informasi dapat disajikan dengan cara yang mudah dicari, diakses, dan dipahami oleh pengguna [10].

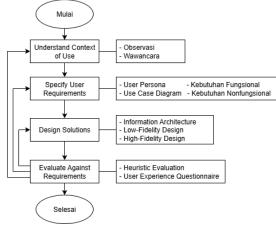
2.6. Wireframe

Wireframe merupakan kerangka awal yang menggambarkan susunan dasar halaman website atau antarmuka aplikasi sebelum masuk ke tahap desain visual. Tahap ini penting dalam perancangan produk karena berfungsi sebagai acuan dalam menentukan struktur serta penempatan elemen informasi. Selain itu, wireframe memudahkan stakeholder untuk memahami dan menyepakati tata letak maupun alur informasi aplikasi sebelum desain UI dikembangkan [11].

2.7. User Persona

User Persona merupakan metode yang digunakan untuk menggali dan menganalisis kebutuhan pengguna secara mendetail. Pendekatan ini membantu memahami permasalahan, kemampuan, serta keterbatasan pengguna dengan latar belakang karakteristik yang berbeda-beda. Melalui analisis tersebut, user persona memudahkan pengembang dalam mengenali kemampuan standar, preferensi, serta pola perilaku unik dari setiap pengguna [12].

2.8. Heuristic Evaluation


Heuristic evaluation merupakan metode evaluasi usability yang digunakan untuk mengidentifikasi permasalahan pada desain antarmuka pengguna agar dapat diperbaiki melalui proses desain yang iteratif. Metode ini untuk menilai tampilan dan kegunaan antarmuka (UI) dengan mengidentifikasi potensi masalah yang dapat dialami oleh pengguna [13]. Metode ini dilakukan dengan menilai elemen antarmuka berdasarkan prinsipprinsip usability (heuristics) yang telah ditentukan, sehingga kualitas desain serta pengalaman pengguna dapat ditingkatkan. Proses evaluasi melibatkan sejumlah evaluator yang memeriksa sistem atau prototipe menggunakan kriteria heuristik, seperti visibilitas status sistem, kesesuaian dengan dunia nyata, kebebasan pengguna, konsistensi, serta pencegahan kesalahan [14].

2.9. User Experience Questionnaire (UEQ)

UEO merupakan instrumen untuk mengevaluasi pengalaman pengguna terhadap produk atau layanan melalui persepsi mereka [15]. Dikembangkan oleh Martin Schrepp dan UEO memungkinkan timnva. penilaian subjektif pengguna secara cepat dan menveluruh dengan menggunakan skala bipolar. Instrumen ini menilai enam dimensi utama, yaitu daya tarik, kejelasan, efisiensi, ketergantungan, stimulasi, dan kebaruan [16]. Daya tarik mencerminkan kesan umum kejelasan pengguna, menilai kemudahan pemahaman sistem. efisiensi mengukur kecepatan pencapaian tujuan, ketergantungan menilai kendali yang diberikan produk, stimulasi menggambarkan tingkat kesenangan, dan kebaruan menilai tingkat inovasi produk.

3. METODE PENELITIAN

Penelitian ini menggunakan metode User-Centered Design (UCD) dalam tahapan perancangan sistem. UCD merupakan pendekatan perancangan yang berfokus pada kebutuhan, karakteristik, dan tujuan pengguna dengan melibatkan mereka secara langsung dalam proses perancangan [7]. Metode ini terdiri dari empat tahapan:

Gambar 1 Metode Penelitian

3.1. Understand Context of Use

Pada tahap Understand Context of Use, proses pengumpulan data dilakukan melalui wawancara dan observasi. Wawancara dilaksanakan bersama stakeholder dengan tujuan untuk menggali kebutuhan serta permasalahan yang dihadapi. Sementara itu, observasi digunakan untuk mempelajari alur

kerja serta pola interaksi pengguna terhadap sistem yang ada saat ini.

3.2. Specify User Requirements

Identifikasi pengguna kebutuhan dilakukan dengan menganalisis hasil wawancara dan observasi sebelumnya. Kebutuhan fungsional dan nonfungsional yang diperoleh kemudian digambarkan dalam use case diagram untuk memperjelas interaksi serta alur proses sistem. Selain itu, dibuat pula user persona sebagai representasi karakteristik utama pengguna yang menjadi target sistem.

3.3. Design Solutions

Tahap Design Solutions dibagi menjadi tiga bagian utama, yaitu penyusunan Information Architecture, pembuatan Wireframe pada Low-Fidelity Design, serta perancangan dan pembuatan prototipe pada High-Fidelity Design.

4. HASIL DAN PEMBAHASAN

4.1. Understand Context of Use

Pada tahap awal Understand Context of Use, dilakukan wawancara dengan dosen yang berperan sebagai stakeholder dalam penelitian ini, serta observasi pada sejumlah kampus yang telah menerapkan sistem perhitungan Capaian Pembelajaran Lulusan (CPL) secara terstruktur.

4.1.1. Wawancara

Wawancara dengan stakeholder dalam penelitian ini dilakukan melalui penyusunan sejumlah pertanyaan yang bertujuan untuk memperoleh serta menggali informasi awal.

Tabel 1 Pertanyaan Wawancara

Pertanyaan Yang	Tujuan
Diajukan	Pertanyaan
Apakah sebelumnya	Memahami
ada metode manual	bagaimana
untuk melakukan	proses
perhitungan CPL?	perhitungan CPL
	dilakukan
	sebelum adanya
	sistem dan
	kendala yang
	dihadapi.
Mengapa diperlukan	Mengidentifikasi
sistem informasi	alasan utama
untuk capaian	pengembangan
pembelajaran	sistem dan
lulusan (SIP-CPL)?	permasalahan
	yang ingin
	diatasi

Jika SIP-CPL	Menentukan
dibuat, siapa saja	kelompok
	_
yang dapat	pengguna
mengakses sistem	sistem, seperti
ini?	dosen,
	Pemantau,
	admin program
	studi, dan admin
	universitas.
Jika Pemantau	Memahami
menggunakan	peran dan
sistem, apa saja	tanggung jawab
yang biasanya	Pemantau dalam
тегека такикап	mengelola dan
terkait CPL?	mengevaluasi
	capaian
	pembelajaran
	lulusan.
Jika Admin Program	Menentukan
studi dan Admin	tugas admin
Universitas	dalam mengelola
menggunakan	data CPL dan
sistem, bagaimana	memastikan
peran mereka dalam	sistem tetap
menginput atau	berjalan dengan
mengelola data?	baik.
Jika Dosen	Mengidentifikasi
menggunakan	kebutuhan dosen
sistem, apa yang	terkait fitur dan
mereka butuhkan	data yang
untuk mendukung	diperlukan
perhitungan CPL?	dalam proses
	evaluasi CPL.

Dari hasil wawancara stakeholder diketahui bahwa belum tersedia yang dapat memetakan menampilkan hasil capaian pembelajaran lulusan (CPL). Selama ini proses pemetaan masih dilakukan secara manual, sehingga rumit, memakan waktu, dan menyulitkan evaluasi karena dokumen tidak terstruktur dengan baik. Oleh karena itu, dibutuhkan sistem informasi yang mampu membantu program studi dalam mengukur mengevaluasi CPL secara objektif, efisien, dan terdokumentasi. Dalam sistem ini, beberapa pihak terlibat sesuai perannya, yakni pemantau, dosen, admin program studi, dan admin universitas. Pemantau berfokus pada peninjauan data dan hasil perhitungan CPL, admin mengelola data mahasiswa, mata kuliah, serta parameter perhitungan seperti pemetaan CPL, aturan penilaian, dan bobot mata kuliah, sedangkan dosen bertugas menginput nilai mahasiswa serta menentukan aturan penilaian dan bobot pada mata kuliah yang diampu.

4.1.2. Observasi

Observasi dilakukan untuk mengidentifikasi fitur utama dari sistem yang sudah diterapkan di beberapa kampus sebagai bahan referensi dalam merancang sistem sesuai kebutuhan.

1. Universitas Islam Negeri Sultan Syarif Kisam Riau

Sistem ini memiliki fitur utama berupa pengelolaan data kurikulum serta pemetaan hubungan antara CPL dan mata kuliah. Selain itu, tersedia pula fitur manajemen dokumen akademik yang mendukung proses akreditasi. Sistem tersebut ditujukan bagi dosen, kaprodi, dan pihak administrasi akademik dalam mengelola kurikulum maupun capaian pembelajaran, sementara mahasiswa tidak memiliki akses langsung.

2. Universitas Islam Indonesia Yogyakarta

Sistem ini memiliki fitur perekapan nilai CPL dari berbagai sumber seperti tugas, proyek, kuis, presentasi, hingga ujian, serta menghitung CPL berdasarkan akumulasi nilai CPMK. Akses diberikan kepada dosen, pemantau, admin program studi, mahasiswa. Dosen dapat menginput nilai, kaprodi dan admin mengelola data CPL, sedangkan mahasiswa dapat memantau capaian mereka secara langsung.

3. Universitas Diponegoro

Sistem ini memberikan akses bagi mahasiswa untuk melihat rencana pembelajaran dan capaian mereka, sementara dosen dapat melakukan asesmen secara terstruktur. Monitoring CPL dilakukan melalui nilai tugas, ujian tengah semester, ujian akhir semester, serta proyek akademik.

4.2. **Specify User Requirements**

Pada tahap ini dilakukan penyusunan spesifikasi kebutuhan pengguna memastikan sistem Capaian Pembelajaran Lulusan (CPL) sesuai dengan tujuan dan peranannya. Spesifikasi tersebut meliputi pembuatan Use Case Diagram untuk menggambarkan interaksi pengguna,

perumusan kebutuhan fungsional dan nonfungsional sebagai dasar fitur sistem, Activity Diagram untuk memetakan alur proses, serta User Persona sebagai representasi karakteristik pengguna.

4.2.1. **Fungsional** dan Kebutuhan Nonfungsional

Tabel 2 Kebutuhan Fungsional		
ID	Deskripsi	
KF-01	Sistem dapat diakses oleh 4 jenis	
	role yaitu admin universitas, admin	
	program studi, dosen dan Pemantau	
KF-02	Sistem dapat menyediakan fitur	
	untuk melihat, menambah,	
	mengedit, dan menghapus data	
	mahasiswa	
KF-03	Sistem dapat menyediakan fitur	
	untuk melihat, menambah,	
	mengedit, dan menghapus data	
	mata kuliah	
KF-04	Sistem dapat mengelola informasi	
	tentang mata kuliah seperti kode,	
	nama kuliah, nama kelas dan	
	CPMK yang terkait	
KF-05	Sistem dapat menyediakan fitur	
	untuk melihat, menambah,	
	mengedit, dan menghapus data	
KF-06	CPL	
KF-06	Sistem dapat memasukkan dan	
	mengubah nilai mahasiswa untuk setiap mata kuliah	
KF-07	Sistem dapat secara otomatis	
K1'-0/	menghitung CPL dan CPMK	
	berdasarkan nilai yang diinput	
KF-08	Sistem menyediakan fitur untuk	
111 00	menghasilkan laporan CPL dan	
	CPMK yang dapat diunduh dalam	
	format tertentu (PDF)	
KF-09	Sistem dapat melakukan pemetaan	
	cpl dan cpmk pada suatu mata	
	kuliah	
KF-10	Sistem dapat menambahkan jenis	
	penilaian baru dan sub penilaian	
	baru	
KF-11	Sistem dapat memasukan bobot	
	pada setiap jenis penilaian pada	
	suatu kelas	

Tabel 3 Kebutuhan Nonfungsional

ID	Parameter	Deskrips	si
KNF-	Reliability	Sistem	harus
01		menampilkan	pesan

		kesalahan yang jelas dan mudah dipahami setiap kali terjadi error.
KNF- 02	Ergonomy	Antarmuka website perlu dirancang agar intuitif, sederhana, serta memiliki konsistensi desain.
KNF-	Safety	Sistem harus
03		memiliki mekanisme
		keamanan yang
		memadai untuk
		melindungi data
		pengguna.
KNF-	Usability	Navigasi sistem
04		harus sederhana,
		dengan menu utama
		yang mudah
		ditemukan dan
		digunakan tanpa
		membingungkan
		pengguna.

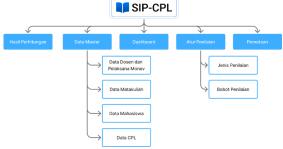
Gambar 2 Use Case Diagram SIP-CPL

Use Case Diagram SIP-CPL pada gambar di atas menggambarkan interaksi antara aktor dengan sistem. Aktor yang terlibat yaitu Admin Universitas, Admin Program Studi, Dosen, dan Pemantau. Admin Universitas dan Admin Program Studi memiliki peran utama dalam mengelola data sistem, seperti data mahasiswa, mata kuliah, CPL, CPMK, serta melakukan pemetaan CPL dengan CPMK, pengaturan jenis penilaian, dan bobot penilaian. Selain itu, mereka juga mengelola akun dosen, pemantau, serta akun admin itu sendiri. Dosen berperan dalam menginput nilai mahasiswa serta melihat hasil perhitungan CPL. Sementara itu, Pemantau hanya memiliki hak akses untuk melihat hasil perhitungan CPL sebagai bentuk monitoring. Semua aktor juga melewati proses login dan logout untuk menjaga keamanan sistem.

4.2.3. User Persona

Gambar 3 User Persona Pemantau

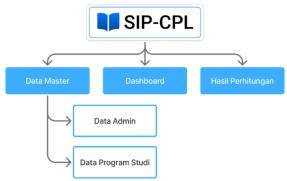
Gambar 4 User Persona Admin Program Studi


User Persona pada SIP-CPL diperoleh dari hasil wawancara dengan stakeholder. Admin program studi, yang direpresentasikan oleh persona Siti, memiliki tanggung jawab utama dalam mengelola data akademik, termasuk CPL dan CPMK, serta memastikan kurikulum selalu terbarui dan sesuai kebutuhan. Sementara itu, pelaksana Monitoring dan Evaluasi (Monev), yang diwakili oleh persona Budi, berperan dalam memantau proses pembelajaran, mengumpulkan data evaluasi, dan memastikan pelaksanaan perkuliahan sejalan dengan standar CPL dan CPMK. Kedua

persona ini menggambarkan kebutuhan akan sistem yang terintegrasi untuk mempermudah proses pemetaan, evaluasi, serta pelaporan capaian pembelajaran.

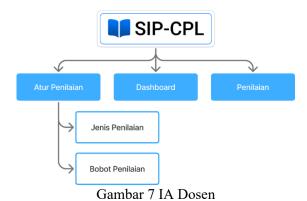
4.3. Design Solutions

Tahap Design Solutions dibagi menjadi tiga bagian utama, yaitu penyusunan Information Architecture (IA), pembuatan Wireframe pada tahap Low-Fidelity Design, serta pengembangan Desain dan Prototipe pada tahap High-Fidelity Design.


4.3.1. Information Architecture (AI)

Gambar 5 IA Admin Program Studi

IA Admin Program Studi pada SIP-CPL dirancang untuk merepresentasikan struktur navigasi sistem yang digunakan oleh peran Admin Program Studi. IA ini memperlihatkan bagaimana fitur-fitur utama diorganisasikan guna mendukung proses pengelolaan data serta perhitungan CPL. Terdapat lima menu utama yang dapat diakses, yaitu Dashboard, Data Master, Atur Penilaian, Pemetaan, dan Hasil Perhitungan, di mana masing-masing menu memiliki fungsi yang saling berkaitan untuk membentuk alur kerja yang sistematis dan efisien.

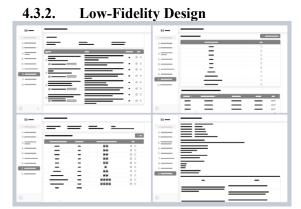

Menu Data Master mencakup empat subfitur, yakni Data Dosen dan Pemantau, Data Mata Kuliah, Data Mahasiswa, serta Data CPL, yang menjadi fondasi utama dalam pemetaan dan perhitungan capaian pembelajaran. Menu Dashboard menyajikan informasi visual berupa grafik, seperti grafik pencapaian CPL dan distribusi nilai. Menu Atur Penilaian digunakan untuk menetapkan jenis penilaian dan bobotnya, yang juga dipakai oleh dosen saat melakukan input nilai dan evaluasi CPL. Selanjutnya, menu Pemetaan berfungsi menghubungkan CPL dan CPMK dengan mata sedangkan kuliah terkait, menu Perhitungan menyajikan hasil akhir evaluasi berdasarkan data serta pemetaan yang telah dilakukan.

Gambar 6 IA Admin Universitas

IA Admin Universitas pada SIP-CPL dirancang untuk menggambarkan struktur navigasi utama yang digunakan oleh peran Admin Universitas. IA ini dibuat untuk mempermudah pengelolaan data master tingkat universitas, memantau capaian pembelajaran dari berbagai program studi, serta mengakses hasil perhitungan capaian secara terintegrasi. Terdapat tiga menu utama, yaitu Data Master, Dashboard, dan Hasil Perhitungan, yang masing-masing berfungsi mendukung aktivitas pengelolaan dan supervisi sistem di tingkat universitas secara terpusat.

Menu Data Master terdiri dari dua subfitur, yakni Data Admin dan Data Program Studi. Subfitur Data Admin memungkinkan pengaturan akun dan hak akses pengguna dari tiap program studi, sedangkan Data Program Studi digunakan untuk mengelola informasi akademik dari setiap program studi yang berada di bawah universitas. Menu Dashboard menyajikan informasi visual berupa grafik capaian pembelajaran antar program studi, sementara menu Hasil Perhitungan rekapitulasi capaian menampilkan pembelajaran lulusan yang dihitung berdasarkan input dari masing-masing program studi.

IA Dosen pada SIP-CPL menggambarkan struktur informasi yang dapat diakses oleh pengguna dengan peran Dosen. IA ini dirancang untuk memfasilitasi aktivitas dosen dalam melakukan penilaian, pengelolaan komponen evaluasi, serta pemantauan capaian pembelajaran mahasiswa.


Terdapat tiga menu utama, yaitu Atur Penilaian, Penilaian, dan Dashboard. Pada Atur Penilaian. dosen memiliki kewenangan untuk menentukan komponen penilaian dan bobot yang digunakan, misalnya menambahkan ienis assessment, menentukan persentase bobot, serta mengaitkannya dengan CPMK yang relevan, serupa dengan fitur yang dimiliki admin program studi. Menu Penilaian digunakan untuk memasukkan nilai mahasiswa berdasarkan komponen penilaian yang telah ditetapkan. Sementara itu, menu Dashboard menampilkan hasil visualisasi dari data penilaian yang telah diinput, sehingga dosen memperoleh gambaran capaian pembelajaran mahasiswa baik secara individu maupun keseluruhan.

IA Pemantau pada SIP-CPL dirancang untuk memberikan akses informasi yang relevan dan menyeluruh bagi pengguna dengan peran Pemantau. Akses ini bersifat terbatas (read-only), sehingga Pemantau hanya dapat melihat data tanpa memiliki wewenang untuk menambah, mengubah, atau menghapus. Tujuan utama rancangan ini adalah agar Pemantau dapat melakukan pengawasan serta evaluasi terhadap proses dan hasil capaian

pembelajaran di program studi yang mereka awasi.

IA Pemantau terdiri dari empat menu utama, yaitu Hasil Perhitungan, Data CPL & CPMK, Dashboard, dan Pemetaan. Menu Hasil Perhitungan menampilkan rekapitulasi capaian pembelajaran lulusan berdasarkan data yang telah diolah oleh dosen. Data CPL & CPMK berisi daftar capaian pembelajaran lulusan dan mata kuliah yang disusun oleh program studi. Menu Dashboard menyajikan visualisasi capaian dalam bentuk grafik untuk mempermudah pemantauan, sedangkan Pemetaan memperlihatkan hubungan antara CPMK dan CPL dalam sistem.

Gambar 9 Wireframe SIP-CPL

Wireframe yang ditampilkan pada gambar di atas merupakan representasi awal dari desain antarmuka sistem SIP-CPL. Wireframe ini menggambarkan struktur tata letak halaman, menu navigasi, serta alur interaksi utama yang akan digunakan oleh berbagai peran pengguna, seperti dosen, admin program studi, dan pemantau. Setiap halaman disusun dengan elemen dasar seperti tabel, form input, tombol aksi, dan ikon navigasi, yang berfungsi untuk mempermudah pengelolaan data CPL, CPMK, mata kuliah, hingga hasil perhitungan.

4.3.3. High-Fidelity Design

Gambar 10 Hi-fi SIP-CPL

Setelah penyusunan prototipe highseluruh untuk halaman yang dibutuhkan, diperoleh total 114 halaman desain, yang terdiri atas 33 halaman untuk role dosen, 11 halaman untuk role pemantau, 50 halaman untuk role admin program studi, serta 20 halaman untuk role admin universitas. Seluruh rancangan ini dikembangkan sesuai kebutuhan pengguna yang telah diidentifikasi sebelumnya, sehingga dapat menjadi acuan utama dalam evaluasi. pengujian, penyempurnaan sistem pada tahap berikutnya.

4.4. Evaluate Against Requirements

Setelah tahap sebelumnya diselesaikan, proses dilanjutkan ke tahap pengujian atau evaluasi. Pengujian dilakukan dengan memanfaatkan Maze Design, di mana pengguna diminta menyelesaikan skenario yang telah dirancang. Selanjutnya, hasilnya dievaluasi oleh pakar menggunakan 10 prinsip heuristik, serta dinilai oleh pengguna melalui metode UEQ dengan bantuan Google Form. Berikut merupakan skenario yang dirancang untuk masing-masing role, yaitu Admin Universitas, Admin Program Studi, Dosen, serta Pemantau:

Tabel 4 Skenario Admin Universitas

Skenario	Deskripsi
Melakukan Login	Silahkan lakukan
ke Dalam Sistem	proses login ke dalam
	SIP-CPL agar dapat
	mengakses fitur-fitur
	yang tersedia.
Menambahkan	Silahkan lakukan
Admin	proses penambahan
Universitas Baru	admin universitas baru
pada Laman Data	melalui laman Data
Admin	Admin pada sistem.
	Pastikan data yang
	dimasukkan lengkap
	dan sesuai

Menambahkan	Silahkan lakukan
Program Studi	proses penambahan
Baru pada Laman	Program Studi baru
Data Program	melalui laman Data
Studi	Program Studi pada
	sistem. Pastikan data
	yang dimasukkan
	lengkap dan sesuai.
Melihat Hasil	Silahkan akses dan
Perhitungan CPL	tinjau hasil perhitungan
	capaian pembelajaran
	lulusan (CPL) pada
	program studi Teknik
	Informatika, khususnya
	untuk kelas Struktur
	Data A. Data ini
	mencerminkan
	pencapaian mahasiswa
	berdasarkan penilaian
	yang telah diinput dan
	digunakan untuk
	evaluasi tingkat
	keberhasilan
	pembelajaran.

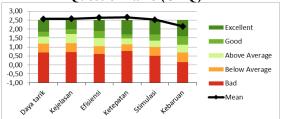
Tabel 5 Skenario Admin Program Studi

Tabel 5 Skenario Admin Program Studi	
Skenario	Deskripsi
Melakukan Login	Silahkan lakukan
ke Dalam Sistem	proses login ke dalam
	SIP-CPL agar dapat
	mengakses fitur-fitur
	yang tersedia.
Menambahkan	Silahkan lakukan
Capaian	proses penambahan
Pembelajaran	Capaian Pembelajaran
Lulusan (CPL)	Lulusan (CPL) untuk
	program studi anda
	pada laman Data CPL
Menambahkan	Setelah tadi anda
Capaian	berhasil menambahkan
Pembelajaran	CPL, Sekarang silahkan
Mata Kuliah	lakukan proses
(CPMK)	penambahan Capaian
	Pembelajaran Mata
	Kuliah (CPMK) untuk
	mata kuliah Struktur
	Data pada laman Data
	Mata Kuliah
Melakukan	Silahkan lakukan
Pemetaan CPL	proses pemetaan
dan CPMK untuk	Capaian Pembelajaran
1	Lulusan (CPL) dan

Mata Kuliah	Capaian Pembelajaran
Struktur Data	Mata Kuliah (CPMK)
	terkait untuk Mata
	Kuliah Struktur Data
	melalui laman
	Pemetaan pada sistem
Menambahkan	Silahkan lakukan
Jenis Penilaian	proses penambahan
Baru	jenis penilaian baru
Duru	pada laman Atur
	Penilaian. Jenis
	penilaian ini akan
	digunakan untuk
	mendefinisikan
	komponen-komponen
	penilaian seperti UTS,
	UAS, tugas, dan
	lainnya yang relevan
	dalam proses evaluasi
	atau penilaian
	mahasiswa.
Mengatur	Silahkan tambahkan
Persentase	bobot Untuk CPMK-01
Penilaian untuk	pada Tugas 1 Sebanyak
Kelas Struktur	4 dan pada Tugas 2
Data A	sebanyak 3 pada laman
	Atur Penilaian untuk
	kelas Struktur Data A.
Melihat Hasil	Silahkan akses dan
Perhitungan CPL	tinjau hasil perhitungan
	capaian pembelajaran
	lulusan (CPL) untuk
	kelas Struktur Data A
	pada laman Hasil
	Perhitungan. Data ini
	digunakan untuk
	mengevaluasi
	ketercapaian
	pembelajaran
	mahasiswa berdasarkan
	penilaian yang telah
	dilakukan

Tabel 6 Skenario Dosen

Skenario	Deskripsi
Melakukan Login	Silahkan lakukan
ke Dalam Sistem	proses login ke dalam
	SIP-CPL agar dapat
	mengakses fitur-fitur
	yang tersedia.
Menambahkan	Silahkan masuk ke
Sub Penilaian Baru	laman Atur Penilaian,


Pada Tugas untuk Kelas Struktur Data A	Kemudian Masuk ke Kelas Struktur Data A, Lalu tambahkan sub penilaian baru untuk Tugas, buat sub baru yaitu Tugas 4. Pastikan sub penilaian tersebut muncul di tabel Jenis Penilaian
Mengatur Persentase Penilaian untuk Kelas Struktur Data A	Silahkan tambahkan bobot Untuk CPMK-01 pada Tugas 1 Sebanyak 4 dan pada Tugas 2 sebanyak 3 pada laman
Memberikan Nilai kepada Mahasiswa Berdasarkan Komponen Penilaian	Atur Penilaian untuk kelas Struktur Data A Silahkan masuk ke menu atau laman Penilaian dan pilih Kelas Struktur Data A, kemudian lakukan pengisian nilai mahasiswa. Masukan nilai secara manual
Meng-Upload Nilai Mahasiswa	Selain melakukan pengisian nilai secara manual seperti sebelumnya, Anda juga dapat melakukan Upload nilai mahasiswa dengan cara mengunggah file Excel yang telah berisi data penilaian.
Melihat Hasil Perhitungan CPL	Silahkan akses dan tinjau hasil perhitungan capaian pembelajaran lulusan (CPL) untuk kelas Struktur Data A pada laman Hasil Perhitungan. Data ini digunakan untuk mengevaluasi ketercapaian pembelajaran mahasiswa berdasarkan penilaian yang telah dilakukan

Tabel 7 Skenario Pemantau

Skenario	Deskripsi

Melakukan	Silahkan lakukan proses
Login ke Dalam	login ke dalam SIP-CPL
Sistem	agar dapat mengakses
	fitur-fitur yang tersedia.
Melihat Data	Silakan akses dan tinjau
CPL & CPMK	data CPL untuk program
Struktur Data	studi Anda dan Tinjau
	CPMK Mata Kuliah
	Struktur Data pada
	laman Data CPL &
	CPMK. Pastikan Anda
	dapat melihat daftar CPL
	beserta deskripsinya
	pada halaman tersebut
Melihat	Silahkan akses laman
Pemetaan CPL	Pemetaan dan lihat
dan CPMK	proses pemetaan antara
Terkait dari Mata	Capaian Pembelajaran
Kuliah Struktur	Lulusan (CPL) dan
Data	Capaian Pembelajaran
	Mata Kuliah (CPMK)
	pada mata kuliah Struktur Data. Pastikan
	Anda dapat melihat
	hubungan antara CPL
	dan CPMK beserta bobot
	keterkaitannya pada
	halaman tersebut
Melihat Hasil	Silahkan akses dan tinjau
Perhitungan CPL	hasil perhitungan
	capaian pembelajaran
	lulusan (CPL) untuk
	kelas Struktur Data A
	pada laman Hasil
	Perhitungan. Data ini
	digunakan untuk
	mengevaluasi
	ketercapaian
	pembelajaran mahasiswa
	berdasarkan penilaian
	yang telah dilakukan

4.4.1. Hasil User Experience Questionnaire (UEQ)

Gambar 11 Grafik Rata-rata Enam Skala

Tabel 8 Detail Rata-rata Enam Skala

Scale	Mean	Comparisson to benchmark
Daya tarik	2.56	Excellent
Kejelasan	2.58	Excellent
Efisiensi	2.63	Excellent
Ketepatan	2.65	Excellent
Stimulasi	2.52	Excellent
Kebaruan	2.15	Excellent

Berdasarkan hasil pengujian User Experience Questionnaire (UEQ), dapat dilihat bahwa seluruh aspek penilaian memperoleh kategori Excellent dengan nilai mean yang cukup tinggi. Skala dengan nilai tertinggi terdapat pada Ketepatan (2.65), diikuti oleh Efisiensi (2.63), Kejelasan (2.58), Daya tarik (2.56), dan Stimulasi (2.52). Sementara itu, skala Kebaruan mendapatkan nilai terendah (2.15), meskipun masih berada pada kategori Excellent. Hasil ini menunjukkan bahwa sistem SIP-CPL mampu memberikan pengalaman pengguna yang sangat baik dari kemudahan, kejelasan, efisiensi, dan ketepatan, meskipun aspek kebaruan dinilai tidak setinggi skala lainnya. Secara keseluruhan, evaluasi ini mengindikasikan bahwa desain sistem sudah sangat memuaskan bagi pengguna.

4.4.2. Hasil Heuristic Evaluation

Tabel 9 Hasil Heuristic Evaluation

No	Evaluator	Evaluator	Evaluator	Evaluator	Severity	Total
Heuristic	1	2	3	4	Ratings	
HE1	0	0	0	0	0	0
HE2	0	0	0	0	0	0
HE3	0	0	0	0	0	0
HE4	1	0	1	0	2	2
HE5	0	0	0	0	0	0
HE6	0	0	0	0	0	0
HE7	0	0	0	0	0	0
HE8	0	0	0	0	0	0
HE9	0	0	0	0	0	0
HE10	0	0	0	0	0	0
Total	1	0	1	0		2

Berdasarkan hasil pengujian heuristic evaluation, ditemukan dua permasalahan pada heuristik HE4 (Consistency and Standards) dengan tingkat keparahan (Severity Ratings) sebesar 2. Kedua masalah tersebut diidentifikasi oleh dua evaluator dengan memberikan saran perbaikan, yaitu: (1) inkonsistensi pada tata letak form input, di mana pada role dosen di halaman penilaian mahasiswa posisi pengisian nilai ditempatkan di sebelah kiri, berbeda dengan halaman lain yang menempatkan kolom edit atau input di sebelah kanan; dan (2) ketidakkonsistenan penggunaan ikon, contohnya ikon untuk melihat data seharusnya menggunakan ikon mata, tetapi saat ini masih memakai ikon edit. Temuan ini menegaskan pentingnya penyempurnaan konsistensi desain antarmuka agar pengalaman pengguna lebih seragam dan intuitif.

4.4.3. Perbaikan Desain

Gambar 12 Perbaikan Tata Letak Input Data

Perbaikan desain pada halaman penilaian mahasiswa dilakukan untuk meningkatkan konsistensi tata letak sesuai prinsip heuristic evaluation. Sebelumnya, kolom "Isi Nilai" pada role dosen ditempatkan di sisi kiri tabel, berbeda dari pola umum pada halaman lain yang meletakkan fungsi input atau edit di sisi kanan. Setelah dilakukan penyesuaian, kolom tersebut dipindahkan ke sisi kanan tabel sehingga selaras dengan standar tata letak di seluruh sistem. Perubahan ini membuat antarmuka lebih seragam, mempermudah pengguna dalam mengenali pola interaksi, serta meminimalkan potensi kebingungan saat melakukan input maupun edit data.

SEBELUM SESUDAH

Gambar 13 Perbaikan Icon

Perbaikan desain pada halaman hasil perhitungan dilakukan untuk menjaga konsistensi penggunaan ikon sesuai prinsip heuristic evaluation. Sebelumnya, pada kolom "Aksi" digunakan ikon edit untuk menampilkan detail, yang berpotensi menimbulkan kebingungan karena ikon tersebut biasanya diidentikkan dengan fungsi mengubah data. Setelah diperbaiki, ikon tersebut diganti dengan

ikon mata yang secara umum merepresentasikan fungsi melihat (view). Perubahan ini meningkatkan kejelasan makna ikon, menyesuaikan desain dengan standar antarmuka yang berlaku, serta memudahkan pengguna memahami fungsi tombol secara langsung tanpa harus membaca keterangan tambahan.

5. KESIMPULAN

Berdasarkan hasil perancangan UI/UX SIP-CPL menggunakan User-Centered Design (UCD), dapat disimpulkan kedalam beberapa poin berikut:

- 1. Perancangan UI/UX SIP-CPL dilaksanakan sesuai tahapan User-Centered Design (UCD) dan menghasilkan fitur utama berupa penambahan data mata kuliah, data mahasiswa, data CPL, proses pemetaan, serta perhitungan CPL. Sistem ini melibatkan empat jenis pengguna, yaitu admin program studi, admin universitas, dosen, dan pemantau, sehingga rancangan benar-benar berangkat dari kebutuhan para pemangku kepentingan.
- 2. Hasil pengujian UEQ menunjukkan kategori positif. Berdasarkan pengolahan data dari 13 responden menggunakan UEQ Data Analysis Tools, keenam skala yang diukur (daya tarik, kejelasan, efisiensi, ketepatan, stimulasi, dan kebaruan) berada pada kategori excellent atau sangat baik.
- 3. Evaluasi heuristik yang dilakukan oleh empat pakar menunjukkan tingkat *usability* yang baik dengan dua temuan minor (*Severity* 2) pada aspek HE4 Consistency & Standards. Permasalahan yang ditemukan terkait perbedaan tata letak kolom "Isi Nilai" dan penggunaan ikon "lihat" yang semula menggunakan ikon "edit", keduanya sudah diperbaiki pada tahap perancangan ulang.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada pihak-pihak terkait yang telah memberi dukungan terhadap penelitian ini.

DAFTAR PUSTAKA

[1] F. Abdillah, "Peran Perguruan Tinggi Dalam Meningkatkan Kualitas Sumber Daya Manusia Di Indonesia," *Educazione*, Vol. 1, No. 1, Pp. 13–24, Aug. 2024, Doi: Https://Doi.Org/10.37985/Educazione.V1i1.4.

- [2] K. Hastuti, H. Susanti, And T. Erfando, "Evaluasi Kebijakan Program Mbkm Dalam Meningkatkan Capaian Pembelajaran Lulusan Perguruan Tinggi," *Ed*, Vol. 4, No. 6, Pp. 7445–7454, Nov. 2022, Doi: 10.31004/Edukatif.V4i6.4119.
- [3] A. Junaidi, Panduan Penyusunan Kurikulum Pendidikan Tinggi Di Era Industri 4.0 Untuk Mendukung Merdeka Belajar-Kampus Merdeka. Jakarta: Direktorat Jenderal Pendidikan Tinggi, 2020. [Online]. Available: Http://Repositori.Kemendikdasmen.Go.Id/Id/E print/22628
- [4] R. Rismawati And I. Tatang, "Peran Sistem Informasi Dalam Meningkatkan Mutu Layanan Pendidikan," *Jt*, Vol. 5, No. 7, Pp. 1099–1122, Oct. 2024, Doi: Https://Doi.Org/10.57171/Jt.V5i7.618.
- [5] I. A. Riu, "Analisis Sistem Informasi Dalam Mengambil Keputusan Kebijakan Fasilitas Upaya Meningkatkan," Vol. 1, No. 6, Pp. 133– 140, 2024, Doi: Https://Doi.Org/10.59971/Jimbe.V1i6.213.
- [6] M. H. Hamdanuddinsyah, M. Hanafi, And P. Sukmasetya, "Perancangan Ui/Ux Aplikasi Buku Online Mizanstore Berbasis Mobile Menggunakan User Centered Design," *Josh*, Vol. 4, No. 4, Pp. 1464–1475, Jul. 2023, Doi: 10.47065/Josh.V4i4.3850.
- [7] H. Himawan And M. Yanu F, *Interface User Experience*. Yogyakarta: Lembaga Penelitian Dan Pengabdian Kepada Masyarakat, 2020. [Online]. Available: http://Eprints.Upnyk.Ac.Id/Id/Eprint/26163
- [8] J. Kirakowski And N. Bevan, Handbook Of User-Centred Design. Inuse, 1998. [Online]. Available: Https://Uxp.Ie/Inuse Handbook Of Ucd.Pdf
- [9] Rahmania Sri Untari And F. N. Hasanah, *Buku Ajar Rekayasa Perangkat Lunak*. Umsida Press, 2020. Doi: 10.21070/2020/978-623-6833-89-6.
- [10] I. Angelica And C. Nas, "Design Ui/Ux Prototype Aplikasi Pemesanan Produk Dimskuy Berbasis Mobile Dengan Menggunakan Figma," *Jurminsi*, Vol. 01, No. 01, Pp. 22–26, 2022.
- [11] M. S. Hartawan, "Penerapan User Centered Design (Ucd) Pada Wireframe Desain User Interface Dan User Experience Aplikasi Sinopsis Film," *Jeis*, Vol. 2, No. 1, Pp. 43–47, Jan. 2022, Doi: 10.56486/Jeis.Vol2no1.161.
- [12] K. M. Ghufron, W. A. Kusuma, And F. Fauzan, "Penggunaan User Persona Untuk Evaluasi Dan Meningkatkan Ekspektasi Pengguna Dalam Kebutuhan Sistem Informasi Akademik," *Sintech Journal*, Vol. 3, No. 2, Pp. 90–99, Oct. 2020, Doi: 10.31598/Sintechjournal.V3i2.587.

- [13] A. A. Damanik, N. S. Hanifah, A. Pauziah, And A. A. Ridha, "Analisis Ui/Ux Terhadap Efektivitas Pelatihan Online Di Skill Academy Menggunakan Heuristic Evaluation," *Jitet*, Vol. 13, No. 3, Jul. 2025, Doi: 10.23960/Jitet.V13i3.6599.
- [14] M. Benaida, "Developing And Extending Usability Heuristics Evaluation For User Interface Design Via Ahp," Soft Comput, Vol. 27, No. 14, Pp. 9693–9707, Jul. 2023, Doi: 10.1007/S00500-022-07803-4.
- [15] A. T. R. Rosaldy, H. M. Az-Zahra, And N. H. Wardani, "Perancangan User Experience Aplikasi Go Umkm By Bsi Berbasis Mobile Menggunakan Metode Human Centered Design (Hcd)," Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, Vol. 8, No. 2, Mar. 2024, [Online]. Available: Https://J-Ptiik.Ub.Ac.Id/Index.Php/J-Ptiik/Article/View/13544
- [16] B. V. Angela, T. T. Wulansari, R. Riyayatsyah, Y. Fitrianto, And A. Rahim, "User Interface And User Experience Analysis Of Kejar Mimpi Mobile Application Using The User-Centered Design Method," *Ilk. J. Ilm.*, Vol. 15, No. 1, Pp. 1–10, Apr. 2023, Doi: 10.33096/Ilkom.V15i1.1455.1-10.