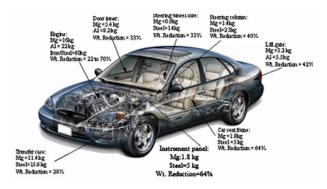
Rancang Bangun Aplikasi Thermovision Untuk Pemetaan Distribusi Suhu Dan Permulaan Penyalaan Magnesium Pada Pembubutan Kecepatan Tinggi

Haris Mahrudi 1) dan Yanuar Burhanuddin 2)

¹⁾Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik Universitas Lampung ²⁾Dosen Jurusan Teknik Mesin, Fakultas Teknik Universitas Lampung Jln. Prof.Sumantri Brojonegoro No. 1 Gedung H FT Lt. 2 Bandar Lampung Telp. (0721) 3555519, Fax. (0721) 704947


Abstract

Objective of this research is making thermovision application for heat mapping. The research is carried out with machining magnesium which chisel holder is designed with a thermocouple on the tip of it. The thermocouple is used as parameter to the maximum and also minimum temperature of the application. The machining process is done at the same time when the video is recorded. After the filming process, the video will be converted into several images (.Jpg format). The images will then be processed by using the thermovision application. After the images are loaded in the application, the distribution of temperature can be seen based on several areas of colors. The result of some image reading by using the thermovision application shows that temperature distribution happens through colors and it also shows the number of temperature in Celsius degree calculation. As seen in the image capturing of object with a range of temperature for about 100°C-150°C, a maximum temperature that can be obtained is 145.662°C and the minimum temperature is 120.973°C. This range of temperature is not too far from the maximum and minimum temperature of the thermocouple.

Keywords: magnesium material, distribution of temperature, thermovision application.

PENDAHULUAN

Berkurangnya persediaan bahan bakar fosil dunia dan kenaikan harga bahan bakar yang drastis, telah memaksa industri otomotif untuk mencari bahan pengganti besi dan baja dengan bahan yang lebih ringan. Terdapat kenaikan minat pada konstruksi ringan sejak industri mobil berkomitmen akan mengurangi sebesar 25% konsumsi bahan bakar untuk semua mobil baru mulai tahun 2005 [2]. Selain itu persyaratan pengurangan berat mobil sebagai sebuah hasil perundangan pengurangan emisi memperkuat pencarian bahan alternatif [4]. Dalam industri otomotif, pengurangan berat kendaraan berarti juga mengurangi biaya bahan bakar dan juga akan mengurangi jumlah emisi gas buang kendaraan. (Gambar 1) bagian kendaraan yang bisa dikurangi beratnya.

Gambar 1. Beberapa komponen otomotif terbuat dari paduan magnesium dan pengurangan beratnya [4].

Material magnesium merupakan salah satu bahan yang mulai dijadikan bahan alternatif dari besi dan baja tersebut. Magnesium adalah logam yang paling ringan, diantara logam yang biasa digunakan dalam suatu struktur. Selain itu, magnesium merupakan elemen terbanyak kedelapan yang membentuk 2% berat kulit bumi, serta merupakan unsur terlarut ketiga terbanyak pada air laut [1].

Dengan unsur yang melimpah tersebut maka wajar jika magnesium dijadikan bahan alternatif. Rasio masa jenis yang rendah dengan kekuatan yang ada pada paduan magnesium, merupakan sebuah keuntungan yang mendasari penggunaan paduan magnesium pada industri transportasi, dimana penurunan berat akan menurunkan konsumsi bahan bakar dan mengurangi emisi. Dalam industri otomotif wilayah penggunaan magnesium biasanya berada dibagian depan dimana posisi mesin berada. Pengurangan berat di wilayah ini membantu meningkatkan performa dan kesetimbangan berat.

Namun ada kekurangan material magnesium tersebut karena magnesium merupakan material yang mudah terbakar terutama pada saat pemesinan dengan kecepatan potong dan pemakanan yang tinggi. Seiring dengan peningkatan kecepatan potong terjadi penumpukan magnesium pada rusuk pahat disebabkan pelengketan antara pahat potong dan benda kerja. Ini mengakibatkan masalah pemesinan yang serius berkaitan dengan getaran dan toleransi. Hal yang lebih penting adalah bahaya penyalaan api pada pemesinan kering paduan magnesium. Api akan terjadi bila titik leleh (400-600oC) tercapai [3].

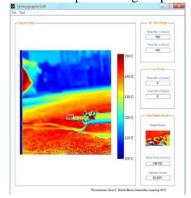
terjadinya Mengingat kecenderungan peningkatan pemakaian magnesium, selain pada industri otomotif, pada bidang industri lainnya seperti industri komputer, telpon genggam dan alat medis karena itu perlu dilakukan sebuah penelitian mengenai distribusi suhu dan permulaan penyalaan api untuk mengetahui tingkat keamanan dalam proses pemesinan magnesium dengan mesin bubut atau mesin lainnya yang sama menggunakan mata pahat. Sedangkan untuk mengetahui distribusi suhu pada pahat, geram, dan benda kerja saat proses pemesinanan ataupun permulaan penyalaan digunakan metoda pengukuran tidak langsung atau yang dikenal sebagai metoda thermovision. Dengan mengetahui distribusi suhu dari pencitraan proses pembubutan diharapkan para praktisi mampu memperkirakan batas maksimum dari parameter pemesinan magnesium.

METODE PENELITIAN

Penelitian dilaksanakan pada bulan Maret sampai dengan Juli 2012. Penelitian ini dilakukan di Laboratorium Teknologi Mekanik dan Laboratorium Metrologi Industri Teknik Mesin Universitas Lampung. Dalam proses pengambilan data dan validasi hasil dilakukan 3 tahap. Adapun tahapan-tahapan itu sebagai berikut;

A. Kondisi-kondisi Proses Validasi Aplikasi Thermovision.

Untuk memvalidasi kebenaran dari hasil pengukuran aplikasi thermovision apakah sudah sesuai dengan termometer dalam mengukur suhu benda, maka disiapkan objek yang sudah dipanaskan. Imaje objek panas diambil dalam empat kondisi yaitu:


a. (Kondisi A) Ditempat terbuka dan tidak menggunakan filter inframerah dibagian lensa kamera.

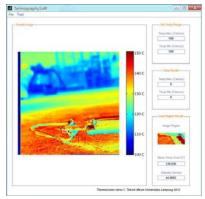
Contoh Sampel A:

Gambar 2. Sample A sebelum diproses

- Gambar setelah diproses dengan aplikasi

Gambar 3. Sample A setelah diproses

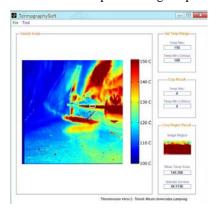
JURNAL FEMA, Volume 1, Nomor 2, April 2013


 (Kondisi B) Ditempat terbuka dan menggunakan filter inframerah dibagian lensa kamera.

Contoh sampel B:

Gambar 4. Sampel B sebelum diproses

- Gambar setelah diproses dengan aplikasi

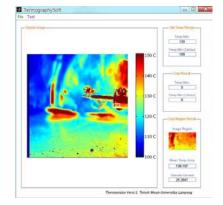

Gambar 5. Sampel B setelah diproses

c. (Kondisi C) Pengambilan imej dilakukan didalam sebuah box yang bertujuan untuk mendapatkan lingkungan gelap, kamera dan benda yang diukur diletakkan dalam satu box bersamaan. Kamera diberi filter inframerah dibagian lensa kamera.

Contoh sampel C:

Gambar 6. Sampel C sebelum diproses
- Gambar setelah diproses dengan aplikasi

Gambar 7. Sampel C setelah diproses


d. (Kondisi D) Pengambilan imej dilakukan didalam sebuah box yang bertujuan untuk mendapatkan lingkungan gelap, kamera dan benda yang diukur diletakkan dalam satu box bersamaan. Kamera Tidak diberi filter inframerah dibagian lensa kamera.

Contoh sampel D:

Gambar 8. Sampel D sebelum diproses

- Gambar setelah diproses dengan aplikasi

Gambar 9. Sampel D setelah diproses

B. Prosedur Validasi Aplikasi Thermovision

Metode yang digunakan dalam penelitian ini adalah metode eksperimen, Beberapa tahapan yang dilakukan dalam proses Validasi Aplikasi Thermovision ini yaitu sebagai berikut:

- a. Kegiatan persiapan penyediaan alat dan bahan beserta kalibrasi alat ukur.
- b. Memanaskan solder hingga temperaturnya mencapai 100°C, Selama pemanasan selalu diawasi menggunakan termokopel yang temperaturnya terbaca pada Thermocouple Thermometer.
- c. Disaat suhu sudah mendekati temperatur 100°C bersiap pengambilan gambar menggunakan kamera inframerah dan jika sudah mencapai temperature 100°C lalu dimulai pengambilan gambar dengan klik rekam pada aplikasi di laptop.
- d. Menunggu sampai suhu di Thermocouple Thermometer menunjukan suhu 150°C, setelah 150°C tercapai lalu klik stop pada aplikasi di laptop.
- e. Memproses video dimulai dengan mengubah video menjadi beberapa frame imej (.jpg) menggunakan aplikasi video2images.
- f. Memproses imej yang sudah diubah dari video menggunakan aplikasi thermovision.

C. Prosedur Pengambilan Sample Pada Pemesinan Magnesium.

Metode yang digunakan dalam penelitian ini adalah metode eksperimen, Beberapa tahapan yang dilakukan dalam proses pengambilan sample pada pemesinan magnesium yaitu sebagai berikut:

- Kegiatan-kegitan sebelum proses permesinan. Kegiatan ini terdiri dari persiapan material, membuat rancangan percobaan, menghitung nilai parameter pemotongan yang akan dikerjakan.
- b. Melakukan eksperimen pemesinan. Dalam tahap ini batang magnesium dimesin dibawah kondisi pemesinan tertentu seperti feed, kecepatan pemotongan, kedalaman pemotongan dan jenis alat.
- Penangkapan citra (Imej capturing). Supaya mendapatkan dokumen dalam bentuk citra yang bisa dianalisa setelah proses uji

- pemesinan, seluruh uji pemesinan dideskripsikan sebelum difoto dan direkam dengan kamera resolusi tinggi dalam bentuk video.
- d. Memproses video dimulai dengan mengubah video menjadi beberapa frame imej (.jpg)
- e. Memproses imej yang sudah diubah dari video menggunakan aplikasi thermovisio.
 - Membuka aplikasi
 - Setting temperatur maksimal dan temperatur minimalnya
 - Pilih file lalu Load imej
 - Browse dimana imej (.jpg) disimpan
 - Imej muncul di lembar kerja aplikasi thermovison
 - Klik tool lalu plih temperature region crop (untuk menghitung rata-rata temperature daerah yang di tandai)
 - Temperatur dan distribusi suhunya akan muncul pada aplikasi thermovision

D. Setup Alat

Alat-alat yang digunakan dalam proses pengujian ini antara lain:

- 1. Mesin Bubut Konvensional.
- 2. Thermometer Digital

Thermometer digital digunakan untuk pembacaan suhu dari sensor LM35DZ dan hasil dari pembacaan berupa tegangan kemudian di konversi menjadi suhu.

- 3. Kamera Inframerah Digital
 - Kamera Inframerah akan berfungsi sebagai penangkap citra yang hasilnya akan diproses menggunakan aplikasi Matlab
- 4. Laptop
 - Sebagai penerima hasil video dari Kamera Inframerah
- 5. Aplikasi pengolah imej
 - Aplikasi pengolah imej ada dua macam. Yang pertama adalah aplikasi untuk mengubah video hasil kamera infrared tadi diubah menjadi bentuk imej aplikasi yang digunakan adalah *video2image converter*. Yang kedua adalah aplikasi Matlab untuk merancang aplikasi thermovision.
- 6. Pahat
 - Digunakan dimesin bubut untuk membentuk benda kerja dan tempat

JURNAL FEMA, Volume 1, Nomor 2, April 2013

menempelnya thermocouple yang disambungkan ke thermometer digital

7. Kabel USB Menghubungkan antara kamera Inframerah ke laptop.

Solder
 Digunakan sebagai sumber panas saat dilakukan validasi aplikasi.

HASIL DAN PEMBAHASAN

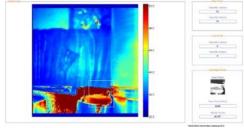
Pada setiap proses pengambilan gambar, benda yang diukur suhunya berupa sebuah solder untuk kondisi tempat terbuka dan pada kondisi tertutup didalam box menggunakan plat besi yang disilangkan.

Pada setiap pengukuran suhu benda yang akan diukur disesuaikan terlebih dahulu suhunya dalam range antara (100-150) lalu dilakukan pengambilan video. Setelah video diambil proses selanjutnya adalah mengubah video menjadi frame gambar setiap satu detik. Hasil pemrosesan data dari empat kondisi diatas menggunakan aplikasi thermovision dapat dilihat pada Tabel 1. berikut ini:

No.	Kondisi	SuhuPada Termokopel	Hasil dari Aplikasi
1.	Kondisi A Terbuka Tanpa Filter		
	Sample a	100°C - 150°C	136.32 °℃
	Sample b	100°C - 150°C	123.13°C
	Sample c	100°C - 150°C	120.973°C
2.	Kondisi B Terbuka Berfilter		
	Sample a	100°C - 150°C	134.223 °℃
	Sample b	100°C - 150°C	128.278 °℃
	Sample c	100°C - 150°C	126.001 °C
3.	Kondisi C Tertutup Berfiler		
	Sample a	100°C - 150°C	137.133 °C
	Sample b	100°C - 150°C	145.662 °C
	Sample c	100°C - 150°C	143.371 °C
4.	Terbuka D Tanpa Filer		
	Sample a	100°C - 150°C	128.37 °C
	Sample b	100°C - 150°C	135.239 °℃
	Sample c	100°C - 150°C	125.246 °℃

Tabel 1. Hasil Validasi Aplikasi

A. Pengujian aplikasi thermovision pada proses pembubutan magnesium berkecepatan tinggi (Sample)

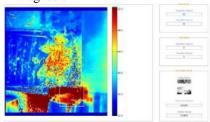

Proses pengujian aplikasi thermovision ini dengan menggunakan gambar dari sebuah proses pembubutan magnesium berkecepatan tinggi hanya bersifat pengambilan contoh saja sebagai salah satu kegunaan aplikasi thermovision dibidang teknik. Dengan bantuan aplikasi tersebut maka pekerja bisa memperkirakan panas yang dihasilkan saat terjadi proses pemesinan magnesium, karena seperti diketahui bahwa magnesium merupakan material yang rentan terhadap panas dan mudah terbakar sehingga membahayakan para pekerja.

Sesuai dengan dari aplikasi syarat thermovision supaya dapat bekerja adalah harus diketahui terlebih dahulu Temperatur maksimum (Tmax) dan Temperatur minimum (Tmin) saat terjadi proses pemesinan. Untuk mengetahui Tmax dan Tmin saat terjadi proses pemesinan maka digunakan sebuah termokopel yang ditempelkan pada ujung pahat mesin bubut. Selama proses pemesinan material magnesium ini diketahui bahwa Tmax yang didapat sebesar 52°C dan Tmin sebesar 32°C Sehingga syarat untuk melakukan pengukuran dengan aplikasi thermovision sudah dapat dipenuhi.

Pada aplikasi thermovision pengukuran suhu material magnesium dilakukan dengan mengambil sample koordinat (Temperatur area) digambar dengan objek pada bagian pahat dan magnesium karena kedua objek ini bergesekan dan menghasilkan panas yang akan dihitung suhunya oleh aplikasi thermovision. Berikut ini uraian pengujian pemesinan yang berhasil diukur menggunakan aplikasi thermovision:

1. Sample A Pada Proses Pemesinan Magnesium Berkecepatan Tinggi (V=500m/min, f=0,05mm/rev, d=0,1mm)

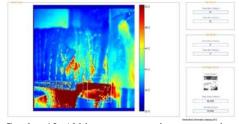
1.1 Awal proses pemesinan magnesium



Gambar 10. Awal proses pemesinan magnesium sample A.

Pada sample pertama diatas adalah gambar

diambil dari awal video proses pemesinan magnesium. Dari hasil pengukuran aplikasi thermovision didapat Temperatur area rata-rata sebesar 44.99°C


1.2 Pertengahan proses pemesinan magnesium

Gambar 11. Pertengahan proses pemesinan magnesium sample A

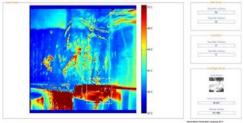
Pada sample kedua adalah gambar diambil dari pertengahan video proses pemesinan magnesium. Dari hasil pengukuran aplikasi thermovision didapat Temperatur area rata-rata sebesar 46.6536°C

1.3 Akhir proses pemesinan magnesium

Gambar 12. Akhir proses pemesinan magnesium sample A

Pada sample kedua adalah gambar diambil dari pertengahan video proses pemesinan magnesium. Dari hasil pengukuran aplikasi thermovision didapat Temperatur area rata-rata sebesar 46.5353°C

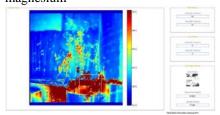
- 2. Sample B Pada Proses Pemesinan Magnesium Berkecepatan Tinggi (V=500m/min, f=0,05mm/rev, d=0,125mm)
 - 2.1. Awal proses pemesinan magnesium


JURNAL FEMA, Volume 1, Nomor 2, April 2013

O C Service Control of Control of

Gambar 13. Awal proses pemesinan magnesium sample B

Pada sample pertama diatas adalah gambar diambil dari awal video proses pemesinan magnesium. Dari hasil pengukuran aplikasi thermovision didapat Temperatur area rata-rata sebesar 46.6926°C


2.2 Pertengahan proses pemesinan magnesium

Gambar 14. Pertengahan proses pemesinan magnesium sample B

Pada sample kedua adalah gambar diambil dari pertengahan video proses pemesinan magnesium. Dari hasil pengukuran aplikasi thermovision didapat Temperatur area rata-rata sebesar 46.425°C

2.2. Akhir proses pemesinan magnesium

Gambar 15. Akhir proses pemesinan magnesium sample B

Pada sample kedua adalah gambar diambil dari pertengahan video proses pemesinan magnesium. Dari hasil pengukuran aplikasi thermovision didapat Temperatur area rata-rata sebesar 47.672°C.

B. Pembahasan Hasil Penelitian Aplikasi Thermovision

Pada proses validasi aplikasi diatas terdapat 4 kondisi dan setiap pengukuran dilakukan penyesuaian suhu terlebih dahulu menggunakan termokopel. Sebelum menggunakan termokopel untuk eksperimen adalah penting untuk memeriksa kepekaan dan ketepatan termokopel karena pemasangan ujung termokopel menggunakan solder kuningan akan mengurangi kepekaan termokopel. Sehingga tingkat kepercayaan yang tinggi terhadap suhu yang diukur akan bertambah. Termokopel beserta plat besi dimasukkan ke dalam tungku (box) pada kondisi 3 dan 4 sedangkan untuk kondisi 1 dan 2 termokopel diletakkan diujung solder.

Suhu tungku diatur mulai dari 50°C sampai 150°C dengan kenaikan suhu dilihat dari termomter digital. Untuk setiap kondisi suhu diatur agar mencapai keadaan tunak (ajeg).

Jika kondisi dan suhu sudah sesuai barulah pengambilan gambar menggunakan kamera inframerah dilakukan. Lama pengambilan gambar dilakukan antara suhu 100 °C sampai suhu 150 °C (sesuai dengan parameter Tmin dan Tmax pada aplikasi thermovision). Hasil video yang terbaca dikomputer lalu diolah menggunakan sebuah freeware video2image converter menjadi beberapa frame image hasil keluarannya adalah gambar berformat .jpg. Pemilihan gambar berformat .jpg beralasan karena menggunakan format umum ini suhu dari citra sudah terbaca jadi tidak perlu mengubah ke format gambar lain seperti .bmp. Setelah selesai mengkonversi video menjadi citra yang disimpan dalam bentuk JPG.

Kemudian citra-citra ini diolah dengan menggunakan perangkat lunak yang mampu mengkonversi energi inframerah menjadi warna yang dapat dilihat oleh mata. Visualisasi suhu dalam bentuk warna menunjukkan distribusi suhu sesuai dengan tinggi-rendah suhu ini yang diinginkan dari fungsi aplikasi thermovision sebenarnya. Jika dilihat dari tujuan diatas untuk visualisasi suhu dalam bentuk warna dan menunjukkan distribusi suhu sesuai dengan tinggi-rendah suhu maka aplikasi sudah bisa melakukan tujuan tersebut. Proses validasi yang dilakukan diatas tadi

setidaknya sudah mewakili tujuan utama dari pembuatan aplikasi *thermovision* yaitu dapat membaca temperatur dari sebuah citra berformat JPG dan distribusi suhunya melalui warna merah pada bagian yang terpanas.

Hasil validasi dari keempat kondisi menunjukkan bahwa aplikasi ini tidak melenceng jauh dari batas suhu minimal (Tmin) dan batas terpanas suhu benda kerja yang dipanaskan (Tmax). Bisa dilihat dari Tabel 1. Jika dilihat dari tabel semua hasil pengukuran dari aplikasi menunjukkan angka lebih kecil dari suhu batas maksimum (Tmax) pada setiap pengambilan gambar yaitu sebesar 150 °C. Dari setiap kondisi pengambilan sample didapat suhu terendah vaitu pengukuran 120.973 **℃** yang didapat pada sample a kondisi A dimana kondisi tersebut benda kerja berada pada ruangan terbuka dan lensa kamera tidak diberi filter inframerah. Sedangkan suhu tertinggi hasil dari setiap kondisi pengambilan sample pengukuran adalah 145.662°C pada sample b kondisi C dimana benda kerja berada dalam kondisi tertutup didalam box dan kamera diberi filter inframerah. Untuk visualisasi suhu dalam bentuk warna dan menunjukkan distribusi suhu sesuai dengan tinggi-rendah suhu dapat dilihat langsung pada interface aplikasi dimana warna pada gambar berubah seolah menunjukan distribusi warna pada gambar tersebut.

Dari hasil validasi aplikasi *thermovision* diatas dapat diambil sebuah asumsi bahwa kondisi pengukuran yang tepat adalah pada kondisi tiga yaitu pada tempat tertutup dan menggunakan filter pada kameranya karena didapat suhu tertinggi yang mendekati suhu Tmax 150°C.

KESIMPULAN DAN SARAN

Setelah melakukan pengujian dan pengambilan data yang diperoleh berdasarkan prosedur pengujian yang telah dibuat, serta melakukan validasi terhadap hasil pengukuran dengan aplikasi *thermovision* ini, maka diperoleh beberapa kesimpulan yaitu: Aplikasi thermovision yang dirancang sudah sanggup membaca temperatur citra JPG, visualisasi suhu dalam bentuk warna dan menunjukkan distribusi suhunya. Kondisi pengambilan

gambar yang tepat untuk pengukuran menggunakan aplikasi thermovision ini adalah kondisi gelap dan lensa berfilter inframerah.

Sehingga aplikasi ini diharapkan bisa membantu untuk mendeteksi suhu dan distribusinya melalui warna.

DAFTAR PUSTAKA

- [1] Annonim. Magnesium en.wikipedia.org (Diakses 9 oktober 2011)
- [2] C. Blawert, N. Hort and K.U. Kainer. 2004. Automotive Applications of Magnesium and Its Alloys. Trans. Indian Inst. Met. Vol. 57, No. 4, pp. 397-408.
- [3] F.Z. Fang, L.C. Lee, X.D. Liu. 2005. Mean flank temperature measurement in high speeddry cutting of magnesium alloy. Journal of Materials Processing Technology 167 (2005) 119–123
- [4] M.K. Kulekci. 2008. Magnesium and its alloys applicationsin automotive industry. Int J Adv Manuf Technol Vol. 39:851–865